本文围绕阿里云 AI 应用开发新范式展开,详细介绍了相关架构、技术和实践案例,为企业构建 AI 应用提供了全面的指导。
AI 应用架构新范式:以 AI Agent 架构为核心,借助云原生 API 网关实现多种角色协同调度,支持流程式和编码式编排 AI Agent,有多种 LLM 部署方式。引入 MCP 协议,简化 LLM 与外部数据源和工具的集成,同时带来系统提示词管理和协同关系等挑战。
云原生 API 网关:具备流量、API、微服务、AI、MCP 网关等多种功能,实现统一流量管控和安全防护。其在高性能、高可用、安全能力和插件机制方面优势显著,在流量网关、AI 网关代理 LLM、MCP 网关等场景有广泛应用。
相关组件最佳实践:MSE Nacos 作为注册中心,在 AI 领域可统一管控 MCP Server,提供服务注册、发现和管理等功能;SAE 部署 Dify 能实现简单易用、稳定高可用、低成本和安全保障;函数计算 FC 可快速构建 MCP Server,具备深度集成、高可用和可观测等特性。
AI 应用可观测体系:遵循 OpenTelemetry 社区 GenAI 语义约定,支持多种 AI 框架和模型,提供精细化埋点和属性,助力企业监测和优化 AI 应用性能。
对企业的影响:AI 应用开发新范式推动企业采用 Serverless 架构,实现业务灵活弹性组装和最小粒度灰度发布,降低资源成本,提升研发效率。