内丘县中心城区道路交通专项规划(2021-2035年) 2025

规划旨在构建内丘县中心城区畅通高效的道路交通体系,指导城市道路交通建设。

总则:依据相关法律法规和规划编制,规划期限为 2021 - 2035 年,近期至 2025 年,规划范围包括 12.48 平方千米的开发边界范围和 28.72 平方千米的主要研究范围。

道路交通发展目标与战略:目标是构筑可持续、协调、一体化的综合交通系统;战略是全面研究规划交通,立足城区特色解决交通问题。

城市交通需求分析:预测 2035 年中心城区人口 13 万人,居民出行总量 39.00 万人次 / 日,机动车保有量约 3.456 万辆。将中心城区划分为 3 个交通大区和 9 个内部交通小区 ,确定公交与小汽车均衡发展的近期方向和公交主导的远期目标。

对外交通系统规划:构建便捷对外交通体系,形成与周边区域的快速交通圈。打造绕城路线,建设相关道路,规划 8 个城市主要出入口。

中心城区道路系统规划:优化总体规划道路系统,形成 “五横四纵” 骨架路网,规划道路控制指标、横断面和交叉口形式,新修和打通部分道路。

景观性道路系统规划:布局与生态用地结合,串联生态空间和公共活动空间,构建 “两横两纵” 主要和 “三横三纵” 次要景观结构。

公共交通系统规划:线路分干线、普线和支线,规划站点覆盖率,新建 1 座公交客运中心综合体。

慢行系统规划:近期整改占道,远期形成完善慢行系统。规划非机动车干道,打造多种慢行区域,保障人行道和行人过街设施。

静态交通系统规划:增加停车设施供给,实行分区差异化发展,规划 11 处社会停车场,制定停车充电设施配建标准。

客货运系统组织规划:规划 1 座公交客运中心综合体,新增 9 条短途客运线路;划分货运交通线路,明确不同类型货运道路。

重点建设规划:按照 “先民生、再循规” 原则分阶段改造路网。近期提升改造 9 条道路,新建 14 条道路并打通 2 条断头路;中期创造康庄路南侧道路大循环,完善德普片区路网。

附则:规划包括文本、附件、图册,经批准后实施,由内丘县城市管理综合行政执法局负责解释。

后台回复“250430”,可获得下载资料的方法。

本公号使用腾讯元器(使用DeepSeek R1大模型)创建了智能交通技术AI服务,欢迎扫码进入体验(或在后台使用私信对话)。

欢迎加入智能交通技术群!扫码进入。

点击文后阅读原文,可获得下载资料的方法。

联系方式:微信号18515441838

<think>好的,我现在要比较Batch Normalization(BN)和Layer Normalization(LN)的区别、适用场景以及在深度学习中的对比。首先,我需要回忆这两种标准化方法的基本概念和原理。 Batch Normalization是在2015由Sergey Ioffe和Christian Szegedy提出的,主要用于加速深度神经网络的训练。它的核心思想是对每个小批量(mini-batch)的数据进行标准化处理,即对每个神经元的输入进行归一化,使其均值接近0,方差接近1。这样可以减少内部协变量偏移(Internal Covariate Shift),从而加快训练速度,并允许使用更高的学习率。BN通常在卷积神经网络(CNN)中应用广泛,特别是在图像处理任务中,比如ResNet等模型就大量使用了BN层[^1]。不过,BN的一个缺点是当batch size较小时,效果会变差,因为均值和方差的估计不准确。比如,在训练TurboAE时,需要非常大的batch size(超过500)才能有效平均噪声影响。 接下来是Layer Normalization,由Jimmy Lei Ba等人在2016提出。与BN不同,LN是对同一层内所有神经元的输出进行标准化,即对每个样本的所有特征进行归一化。这种方法不依赖于batch size的大小,因此在batch size较小或动态变化的情况下表现更好。LN在循环神经网络(RNN)和Transformer模型中应用较多,比如在自然语言处理任务中,由于序列长度可变,使用LN可以更好地处理不同长度的输入。例如,DeepDR-Transformer模块在处理眼底图像分类任务时,可能使用了类似LN的结构来保持稳定性[^2]。 两者的主要区别在于归一化的维度不同。BN在batch维度和特征维度上进行归一化,而LN是在特征维度和层维度上进行。因此,BN的效果受batch size影响较大,而LN则不受此限制。此外,BN在训练和推理时的行为不同,需要维护移动平均的均值和方差,而LN在训练和推理时计算方式一致,不需要额外参数。 适用场景方面,BN适合固定深度的模型和较大的batch size,比如图像分类任务中的CNN。LN则适合变长序列或小batch size的情况,如NLP中的Transformer或RNN。此外,在强化学习或生成对抗网络(GAN)中,由于batch size可能不稳定,LN也更适合。 需要进一步验证的是,LN是否真的在Transformer中被广泛使用,以及BN在batch size较小时的具体表现。根据引用[1],TurboAE需要大batch size才能有效,这说明BN对batch size敏感,而LN可能更适合小batch场景。同时,引用[2]提到的DeepDR-Transformer使用了全局平均池化和全连接层,可能未明确提到LN,但Transformer架构通常使用LN,如原始论文中的设计。 总结下来,BN和LN的主要区别在于归一化的维度和对batch size的依赖,适用场景则根据模型类型和任务需求来选择。</think>### Batch Normalization vs Layer Normalization: 区别与适用场景 #### 1. **核心区别** - **Batch Normalization (BN)** 对每个神经元的输入按 **批次维度** 进行标准化。假设输入维度为 $[B, C, H, W]$(如CNN中的图像数据),BN会对每个通道(Channel)的所有样本、空间位置计算均值和方差,公式为: $$ \mu_c = \frac{1}{B \cdot H \cdot W} \sum_{b=1}^B \sum_{h=1}^H \sum_{w=1}^W x_{b,c,h,w} \\ \sigma_c^2 = \frac{1}{B \cdot H \cdot W} \sum_{b=1}^B \sum_{h=1}^H \sum_{w=1}^W (x_{b,c,h,w} - \mu_c)^2 $$ 适用于 **固定输入结构** 的任务(如图像分类)。 - **Layer Normalization (LN)** 对每个样本的所有神经元输出按 **特征维度** 进行标准化。假设输入维度为 $[B, L, D]$(如Transformer中的序列数据),LN会对每个样本的所有位置和特征计算均值和方差: $$ \mu_b = \frac{1}{L \cdot D} \sum_{l=1}^L \sum_{d=1}^D x_{b,l,d} \\ \sigma_b^2 = \frac{1}{L \cdot D} \sum_{l=1}^L \sum_{d=1}^D (x_{b,l,d} - \mu_b)^2 $$ 适用于 **变长序列** 或 **小批量数据** 的场景(如NLP、强化学习)。 --- #### 2. **适用场景对比** | **特性** | **Batch Normalization** | **Layer Normalization** | |------------------------|--------------------------------------|--------------------------------------| | **数据依赖** | 依赖批次统计,需要较大batch size | 单样本统计,与batch size无关 | | **任务类型** | 图像处理(CNN)、固定输入长度的任务 | NLP(Transformer)、RNN、强化学习 | | **训练稳定性** | 对batch size敏感,小批次效果下降 | 对batch size鲁棒 | | **推理行为** | 使用移动平均统计量 | 直接计算当前样本统计量 | --- #### 3. **性能影响** - **BN的优势与局限** 在图像任务中显著加速收敛,但受限于batch size。例如,在TurboAE训练中,batch size需大于500才能有效平均噪声影响。 - **LN的优势与局限** 更适合动态输入或小batch场景。例如,Transformer通过LN处理变长序列,而DeepDR-Transformer在医学图像分类中可能依赖类似结构[^2]。 --- #### 4. **代码示例对比** ```python # Batch Normalization (PyTorch) import torch.nn as nn bn = nn.BatchNorm2d(num_features=64) # 用于CNN # Layer Normalization (PyTorch) ln = nn.LayerNorm(normalized_shape=512) # 用于Transformer ``` ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值