代码随想录算法训练营day01 704. 二分查找、27. 移除元素

代码随想录算法训练营day01| 704. 二分查找、27. 移除元素(暴力法,双指针法,优化双指针)

注意问题

数组下标都是从0开始的,数组内存空间的地址连续的,因此数组的元素不能删除,只能覆盖。

二分查找的条件:

数组为有序数组,数组中无重复元素

二分查找的关键注意问题:区间的定义

区间的定义就是不变量。要在二分查找的过程中,保持不变量,就是在while寻找中每一次边界的处理都要坚持根据区间的定义来操作,这就是循环不变量规则。写二分法,区间的定义一般为两种,左闭右闭即[left, right],或者左闭右开即[left, right)。

  1. 二分查找

    二分法流程

    迭代法1:左闭右闭区间


class Solution {
public:
    int search(vector<int>& nums, int target) {
        int left = 0;
        int right = nums.size() - 1; // 定义target在左闭右闭的区间里,[left, right]
        while (left <= right) { // 当left==right,区间[left, right]依然有效,所以用 <=
            int middle = left + ((right - left) / 2);// 防止溢出 等同于(left + right)/2
            if (nums[middle] > target) {
                right = middle - 1; // target 在左区间,所以[left, middle - 1]
            } else if (nums[middle] < target) {
                left = middle + 1; // target 在右区间,所以[middle + 1, right]
            } else { // nums[middle] == target
                return middle; // 数组中找到目标值,直接返回下标
            }
        }
        // 未找到目标值
        return -1;
    }
};
迭代法2:左闭右开区间
class Solution {
public:
    int search(vector<int>& nums, int target) {
        int left = 0;
        int right = nums.size(); // 定义target在左闭右开的区间里,即:[left, right)
        while (left < right) { // 因为left == right的时候,在[left, right)是无效的空间,所以使用 <
            int middle = left + ((right - left) >> 1);
            if (nums[middle] > target) {
                right = middle; // target 在左区间,在[left, middle)中
            } else if (nums[middle] < target) {
                left = middle + 1; // target 在右区间,在[middle + 1, right)中
            } else { // nums[middle] == target
                return middle; // 数组中找到目标值,直接返回下标
            }
        }
        // 未找到目标值
        return -1;
    }
};
  1. 移除元素

1.暴力法:发现目标元素后,将后面的元素向前移动。两层for循环,一个for循环遍历数组元素 ,第二个for循环更新数组。

class Solution {
public:
    int removeElement(vector<int>& nums, int val) {
        int size = nums.size();
        for (int i = 0; i < size; i++) {
            if (nums[i] == val) { // 发现需要移除的元素,就将数组集体向前移动一位
                for (int j = i + 1; j < size; j++) {
                    nums[j - 1] = nums[j];
                }
                i--; // 因为下标i以后的数值都向前移动了一位,所以i也向前移动一位
                size--; // 此时数组的大小-1
            }
        }
        return size;

    }
};

时间复杂度:双层for循环,所以为O(n^2)
空间复杂度:O(1)

2.快慢指针法(双指针):

定义快慢指针

  • 快指针:寻找新数组的元素 ,新数组就是不含有目标元素的数组
  • 慢指针:指向更新 新数组下标的位置

两个指针实质上在一个数组上进行扫描,快指针在找目标元素,慢指针就在更新元素

class Solution {
public:
    int removeElement(vector<int>& nums, int val) {
        int slowIndex = 0;
        for (int fastIndex = 0; fastIndex < nums.size(); fastIndex++) {
            if (val != nums[fastIndex]) {
                nums[slowIndex++] = nums[fastIndex];
            }
        }
        return slowIndex;
    }
};

时间复杂度:O(n)
空间复杂度:O(1)

3.优化双指针

思路

如果要移除的元素恰好在数组的开头,例如序列 [1,2,3,4,5], 当val 为 1 时,我们需要把每一个元素都左移一位。如果元素的顺序可以改变,实际上我们可以直接将最后一个元素 5 移动到序列开头,取代元素 1,得到序列 [5,2,3,4]。这个优化在序列中val 元素的数量较少时非常有效。

实现方面,我们依然使用双指针,两个指针初始时分别位于数组的首尾,向中间移动遍历该序列。这样的方法两个指针在最坏的情况下合起来只遍历了数组一次。**与优化前不同的是,**避免了需要保留的元素的重复赋值操作。

class Solution {
public:
    int removeElement(vector<int>& nums, int val) {
        int left = 0, right = nums.size();
        while (left < right) {
            if (nums[left] == val) {
                nums[left] = nums[right - 1];
                right--;
            } else {
                left++;
            }
        }
        return left;
    }
};

(法二:其实是对于区间的不同理解)

class Solution {
public:
    int removeElement(vector<int>& nums, int val) {
        int leftIndex = 0;
        int rightIndex = nums.size() - 1;
        while (leftIndex <= rightIndex) {
            // 找左边等于val的元素
            while (leftIndex <= rightIndex && nums[leftIndex] != val){
                ++leftIndex;
            }
            // 找右边不等于val的元素
            while (leftIndex <= rightIndex && nums[rightIndex] == val) {
                -- rightIndex;
            }
            // 将右边不等于val的元素覆盖左边等于val的元素
            if (leftIndex < rightIndex) {
                nums[leftIndex++] = nums[rightIndex--];
            }
        }
        return leftIndex;   // leftIndex一定指向了最终数组末尾的下一个元素
    }
};

时间复杂度:O(n)
空间复杂度:O(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

99岁扶墙冲锋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值