代码随想录训练营day22 235.二叉搜索树的最近公共祖先 701.二叉搜索树中的插入操作 450.删除二叉搜索树中的节点

代码随想录训练营day22 | 235.二叉搜索树的最近公共祖先 701.二叉搜索树中的插入操作 450.删除二叉搜索树中的节点

235.二叉搜索树的最近公共祖先

给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。

百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”

例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5]

235. 二叉搜索树的最近公共祖先

示例 1:

  • 输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
  • 输出: 6
  • 解释: 节点 2 和节点 8 的最近公共祖先是 6。

示例 2:

  • 输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
  • 输出: 2
  • 解释: 节点 2 和节点 4 的最近公共祖先是 2, 因为根据定义最近公共祖先节点可以为节点本身。

说明:

  • 所有节点的值都是唯一的。
  • p、q 为不同节点且均存在于给定的二叉搜索树中。

思路:当我们从上向下去递归遍历,第一次遇到 cur节点是数值在[p, q]区间中,那么cur就是 p和q的最近公共祖先。可以通过画图来分析。

235.二叉搜索树的最近公共祖先2
class Solution {
private:
    TreeNode* traversal(TreeNode* cur, TreeNode* p, TreeNode* q) {
        if (cur == NULL) return cur;
                                                        // 中
        if (cur->val > p->val && cur->val > q->val) {   // 左
            TreeNode* left = traversal(cur->left, p, q);
            if (left != NULL) {
                return left;
            }
        }

        if (cur->val < p->val && cur->val < q->val) {   // 右
            TreeNode* right = traversal(cur->right, p, q);
            if (right != NULL) {
                return right;
            }
        }
        return cur;
    }
public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        return traversal(root, p, q);
    }
};

精简代码:

class Solution {
public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        if (root->val > p->val && root->val > q->val) {
            return lowestCommonAncestor(root->left, p, q);
        } else if (root->val < p->val && root->val < q->val) {
            return lowestCommonAncestor(root->right, p, q);
        } else return root;
    }
};

迭代法更容易理解,更为精简:

class Solution {
public:
    TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
        while(root) {
            if (root->val > p->val && root->val > q->val) {
                root = root->left;
            } else if (root->val < p->val && root->val < q->val) {
                root = root->right;
            } else return root;
        }
        return NULL;
    }
};
701.二叉搜索树中的插入操作

给定二叉搜索树(BST)的根节点和要插入树中的值,将值插入二叉搜索树。 返回插入后二叉搜索树的根节点。 输入数据保证,新值和原始二叉搜索树中的任意节点值都不同。

注意,可能存在多种有效的插入方式,只要树在插入后仍保持为二叉搜索树即可。 你可以返回任意有效的结果。

701.二叉搜索树中的插入操作

提示:

  • 给定的树上的节点数介于 0 和 10^4 之间
  • 每个节点都有一个唯一整数值,取值范围从 0 到 10^8
  • -10^8 <= val <= 10^8
  • 新值和原始二叉搜索树中的任意节点值都不同

思路:下一层将加入节点返回,本层用root->left或者root->right将其接住

class Solution {
public:
    TreeNode* insertIntoBST(TreeNode* root, int val) {
        if (root == NULL) {
            TreeNode* node = new TreeNode(val);
            return node;
        }
        if (root->val > val) root->left = insertIntoBST(root->left, val);
        if (root->val < val) root->right = insertIntoBST(root->right, val);
        return root;
    }
};
450.删除二叉搜索树中的节点

给定一个二叉搜索树的根节点 root 和一个值 key,删除二叉搜索树中的 key 对应的节点,并保证二叉搜索树的性质不变。返回二叉搜索树(有可能被更新)的根节点的引用。

一般来说,删除节点可分为两个步骤:

首先找到需要删除的节点; 如果找到了,删除它。 说明: 要求算法时间复杂度为 O ( h ) O(h) O(h),h 为树的高度。

示例:

450.删除二叉搜索树中的节点

思路1:将二叉搜索树通过中序遍历建立有序数组,再将有序数组转换为二叉搜索树。

class Solution {
vector<int> vec;
private:
    void transform(TreeNode* root){
        if(root==NULL) return;
        transform(root->left);
        vec.push_back(root->val);
        transform(root->right);
    }
    TreeNode* traversal(vector<int>& nums, int left, int right) {
        if (left > right) return nullptr;
        int mid = left + ((right - left) / 2);
        TreeNode* root = new TreeNode(nums[mid]);
        root->left = traversal(nums, left, mid - 1);
        root->right = traversal(nums, mid + 1, right);
        return root;
    }

public:
    TreeNode* deleteNode(TreeNode* root, int key) {
        vec.clear();
        transform(root);
        auto iter = remove(vec.begin(), vec.end(), key);
        vec.erase(iter, vec.end());
        TreeNode* Root=traversal(vec,0,vec.size()-1);
        return Root;
    }
};

remove(): 删除容器中所有和指定元素值相等的元素,并返回指向最后一个元素下一个位置的迭代器。值得一提的是,调用该函数不会改变容器的大小和容量。

**erase(beg,end)😗*删除 vector 容器中位于迭代器 [beg,end)指定区域内的所有元素,并返回指向被删除区域下一个位置元素的迭代器。该容器的大小(size)会减小,但容量(capacity)不会发生改变。

**erase(pos)😗*删除 vector 容器中 pos 迭代器指定位置处的元素,并返回指向被删除元素下一个位置元素的迭代器。该容器的大小(size)会减 1,但容量(capacity)不会发生改变。

#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;

int main()
{
    vector<int>demo{ 1,3,3,4,3,5 };
    //交换要删除元素和最后一个元素的位置
    auto iter = std::remove(demo.begin(), demo.end(), 3);

    cout << "size is :" << demo.size() << endl;
    cout << "capacity is :" << demo.capacity() << endl;
    //输出剩余的元素
    for (auto first = demo.begin(); first < iter;++first) {
        cout << *first << " ";
    }
    return 0;
}
/*
运行结果为:
size is :6
capacity is :6
1 4 5
*/

注意,在对容器执行完 remove() 函数之后,由于该函数并没有改变容器原来的大小和容量,因此无法使用之前的方法遍历容器,而是需要向程序中那样,借助 remove() 返回的迭代器完成正确的遍历。remove() 的实现原理是,在遍历容器中的元素时,一旦遇到目标元素,就做上标记,然后继续遍历,直到找到一个非目标元素,即用此元素将最先做标记的位置覆盖掉,同时将此非目标元素所在的位置也做上标记,等待找到新的非目标元素将其覆盖。因此,如果将上面程序中 demo 容器的元素全部输出,得到的结果为 1 4 5 4 3 5

通过 remove() 函数删除掉 demo 容器中的多个指定元素,该容器的大小和容量都没有改变,其剩余位置还保留了之前存储的元素。我们可以使用 erase() 成员函数删掉这些 “无用” 的元素。

#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;

int main()
{
    vector<int>demo{ 1,3,3,4,3,5 };
    //交换要删除元素和最后一个元素的位置
    auto iter = std::remove(demo.begin(), demo.end(), 3);
    demo.erase(iter, demo.end());
    cout << "size is :" << demo.size() << endl;
    cout << "capacity is :" << demo.capacity() << endl;
    //输出剩余的元素
    for (int i = 0; i < demo.size();i++) {
        cout << demo[i] << " ";
    }
    return 0;
}

思路2:将五种情况严格分析。

有以下五种情况:

  • 第一种情况:没找到删除的节点,遍历到空节点直接返回了
  • 找到删除的节点
    • 第二种情况:左右孩子都为空(叶子节点),直接删除节点, 返回NULL为根节点
    • 第三种情况:删除节点的左孩子为空,右孩子不为空,删除节点,右孩子补位,返回右孩子为根节点
    • 第四种情况:删除节点的右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点
    • 第五种情况:左右孩子节点都不为空,则将删除节点的左子树头结点(左孩子)放到删除节点的右子树的最左面节点的左孩子上,返回删除节点右孩子为新的根节点。

在这里插入图片描述

class Solution {
public:
    TreeNode* deleteNode(TreeNode* root, int key) {
        if (root == nullptr) return root; // 第一种情况:没找到删除的节点,遍历到空节点直接返回了
        if (root->val == key) {
            // 第二种情况:左右孩子都为空(叶子节点),直接删除节点, 返回NULL为根节点
            if (root->left == nullptr && root->right == nullptr) {
                ///! 内存释放
                delete root;
                return nullptr;
            }
            // 第三种情况:其左孩子为空,右孩子不为空,删除节点,右孩子补位 ,返回右孩子为根节点
            else if (root->left == nullptr) {
                auto retNode = root->right;
                ///! 内存释放
                delete root;
                return retNode;
            }
            // 第四种情况:其右孩子为空,左孩子不为空,删除节点,左孩子补位,返回左孩子为根节点
            else if (root->right == nullptr) {
                auto retNode = root->left;
                ///! 内存释放
                delete root;
                return retNode;
            }
            // 第五种情况:左右孩子节点都不为空,则将删除节点的左子树放到删除节点的右子树的最左面节点的左孩子的位置
            // 并返回删除节点右孩子为新的根节点。
            else {
                TreeNode* cur = root->right; // 找右子树最左面的节点
                while(cur->left != nullptr) {
                    cur = cur->left;
                }
                cur->left = root->left; // 把要删除的节点(root)左子树放在cur的左孩子的位置
                TreeNode* tmp = root;   // 把root节点保存一下,下面来删除
                root = root->right;     // 返回旧root的右孩子作为新root
                delete tmp;             // 释放节点内存(这里不写也可以,但C++最好手动释放一下吧)
                return root;
            }
        }
        if (root->val > key) root->left = deleteNode(root->left, key);
        if (root->val < key) root->right = deleteNode(root->right, key);
        return root;
    }
};
elete tmp;             // 释放节点内存(这里不写也可以,但C++最好手动释放一下吧)
                return root;
            }
        }
        if (root->val > key) root->left = deleteNode(root->left, key);
        if (root->val < key) root->right = deleteNode(root->right, key);
        return root;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

99岁扶墙冲锋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值