随着科技的不断进步,智能座舱技术也在不断地发展中。自动驾驶汽车本身需要具备感知、策划、决策、控制等一系列能力,而数据则是提高自动驾驶AI能力的重要因素之一。
AI数据作为人工智能和机器学习的基础,在自动驾驶领域中发挥着重要作用。对于自动驾驶领域头部企业来说,为了加快智能座舱技术落地进程,往往需要更高质量的标注数据做支撑。
- 整体要求
使用车机在车内采集唤醒词和车载语音指令数据,用于训练语言识别模型。
- 采集要求
1.采集环境
在实车上录音,录音分为停车场景:在车内静止,车辆熄火,关窗,关空调,车内无噪声环境,或行车场景。
2.采集设备
采用车机在指定型号的实车上录音。
3.录音位置
在安静车内4个位置场景(主驾/副驾/左后/右后)下进行采集,每个唤醒词每个位置场景采集数十句到数千句不等,每条录音前和录音后至少留2秒以上的空白录音。
4.采集内容
采集关键词包括:播放,暂停,收藏,我的喜欢,本地歌曲,收藏歌单,已购曲目,空调,打开音乐界面,吹脸,吹脚,内循环,外循环,前除霜,后除霜,取消收藏,单曲循环,顺序播放,随机播放,私人电台,最新音乐,音乐排行,返回首页,调高温度,调低温度,调节风量,调高风量,调低风量,自动循环,吹脸吹脚,风速调高,风速调低,风速最小,风速最大,主驾温度调高,主驾温度调低,副驾温度调高,副驾座椅加热,打开座椅加热等关键词。
5. 采集人员多样性
通常情况下,录制人员的性别比例约为男:女=1:1,年龄在20到50之间,分布情况通常为20-30占30%,30-40占50%,40-50占20%。
6.采集区域多样性
录制人员地区分布为东北区域、北京周边区域、西北区域、中部区域、华东区域、东南区域、西南地区、两广区域,以上这些地区的人数比例均等。
7. 录制语言为标准普通话和带口音的普通话。
8. 录音前,车机和车需要通过音频质量测试,以保证各个场景下的录音质量都能通过测试。
- 标注要求
- 语音清洗,删去无效音频。
- 语音切割,保证有效音频前后静音两秒,截取时间过长或者过短都不符合语音数据标注规范。
- 验收标准
- 采集数量、录制人员男女比例、录制人员年龄比例和地区分布比例达到要求。
2. 音频文件名没有错误,录音内容完整,录音没有破音,录音信噪比达标,录音内容连续,录音没有异常噪音。标注准确率在98%以上。