论文赏鉴
文章平均质量分 76
Yolo566Q
2024要加油
展开
-
基于ANN的滑坡易发性区划:采样区域对模型泛化和空间外推能力的影响
在因子选取上,作者选取了许多运用较少的因子体系,例如纵向曲率、斜坡长度和坡面系数,随后,通过设置缓冲区的距离,以此区分非滑坡与滑坡间的属性特征,获取与滑坡样本的属性差异较大的非滑坡数据,证明模型具有泛化能力和空间外推能力。(1)不同区域的样本集有所不同,包含着不同的地形地貌属性,通过不同的样本对同一个地区进行区划(如下图),结果表明,模型的准确率均高于0.9,但却呈现出不同的空间分布。(2)非滑坡采用区域的缓冲区越大,ANN的模型精度较高,因为非滑坡样本具有不同的地势条件,模型更易区划滑坡与非滑坡。原创 2023-05-24 10:25:23 · 289 阅读 · 0 评论 -
TROPOMI卫星SIF产品真实性检验——基于塔基观测和NIRv空间升尺度方法
因此,未来迫切发展更高精度的卫星SIF反演算法,发射更高性能的SIF卫星遥感器,提供高精度、高时空分辨率的SIF卫星遥感产品,以满足全球和区域尺度的植被光合生产力监测需求。利用该自主观测的SIF验证数据集,评估了加州理工团队和欧空局团队的TROPOMI卫星SIF产品精度,即TROPOSIFCaltech(包含远红光和红光波段TROPOSIFCaltech数据集)和TROPOSIFESA(包含由两个不同反演窗口反演得到的远红光波段TROPOSIF735和TROPOSIF743数据集)。原创 2023-04-19 15:16:59 · 738 阅读 · 0 评论