AcWing 3587. 连通图

3587. 连通图 - AcWing题库

给定一个无向图和其中的所有边,判断这个图是否所有顶点都是连通的。

输入格式

输入包含若干组数据。

每组数据第一行包含两个整数 n 和 m,表示无向图的点和边数。

接下来 mm 行,每行包含两个整数 x,x,,表示点 x 和点 y 相连。

点的编号从 11 到 nn。

不保证没有重边和自环。

输出格式

每组数据输出一行,一个结果,如果所有顶点都是连通的,输出 YES,否则输出 NO

数据范围

输入最多包含 1010 组数据。
1≤n≤1000
1≤m≤5000,
1≤x,y≤n

输入样例:

4 3
1 2
2 3
3 2
3 2
1 2
2 3

输出样例:

NO
YES
难度:简单
时/空限制:1s / 64MB
总通过数:217
总尝试数:410
来源:吉林大学考研机试题
算法标签

 思路1:DFS遍历图

选择任一点进行深度优先遍历,用一个vis数组记录一个点是否被遍历过,遍历完之后,检查vis数组,是否还有没有遍历过的点,如果有,则不连通,反之连通;

采用邻接矩阵存储 ,时间复杂度:O(n^2)

/*
* @Author: Spare Lin
* @Project: AcWing2022
* @Date: 2022/7/6 22:32
* @Description: 3587. 连通图 来源:吉林大学考研机试题
*/

#include <iostream>
#include <algorithm>
#include <cstring>

using namespace std;

const int MAXN = 1e3 + 7;
int g[MAXN][MAXN], n, m;
bool vis[MAXN];

void dfs(int u) {
    vis[u] = true;
    for (int i = 1; i <= n; ++i) {
        if (g[u][i] != 0 && !vis[i]) //若还未访问当前节点 且边的权值不为0
            dfs(i);
    }
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);
    cout.tie(nullptr);

    while (cin >> n >> m) {
        //每组输入之前初始化邻接矩阵和访问数组
        memset(g, 0, sizeof(g));
        memset(vis, false, sizeof (vis));
        while (m--) {
            int x, y;
            cin >> x >> y;
            g[x][y] = g[y][x] = 1; //初始化边权为1
        }
        dfs(1);
        int i;
        for (i = 1; i <= n; ++i) {
            if (!vis[i]) {
                break;
            }
        }
        cout << (i <= n ? "NO\n" : "YES\n");
    }
    return 0;
}

 思路2:并查集

依次判断每个结点的父节点是否相同

/*依次判断每个结点的父节点是否相同*/

#include <iostream>

using namespace std;

const int MAXN = 1e3 + 7;
int p[MAXN], n, m;

int find(int x) {
    if (p[x] != x) p[x] = find(p[x]);
    return p[x];
}

int main() {
    while(cin >> n >> m) {
        for (int i = 1; i <= n; ++i) {
            p[i] = i;
        }
        while(m--) {
            int x, y;
            cin >> x >> y;
            int fx = find(x), fy = find(y);
            if(fx != fy) p[fx] = fy;
        }
        bool flag = false;
        int ans = p[find(1)];
        for (int i = 2; i <= n; ++i) {
            if(p[find(i)] != ans) {
                flag = true;
                break;
            }
        }
        cout << (flag ? "NO\n" : "YES\n");
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值