给定一个无向图和其中的所有边,判断这个图是否所有顶点都是连通的。
输入格式
输入包含若干组数据。
每组数据第一行包含两个整数 n 和 m,表示无向图的点和边数。
接下来 mm 行,每行包含两个整数 x,x,,表示点 x 和点 y 相连。
点的编号从 11 到 nn。
不保证没有重边和自环。
输出格式
每组数据输出一行,一个结果,如果所有顶点都是连通的,输出 YES
,否则输出 NO
。
数据范围
输入最多包含 1010 组数据。
1≤n≤1000
1≤m≤5000,
1≤x,y≤n
输入样例:
4 3
1 2
2 3
3 2
3 2
1 2
2 3
输出样例:
NO
YES
难度:简单 |
时/空限制:1s / 64MB |
总通过数:217 |
总尝试数:410 |
来源:吉林大学考研机试题 |
算法标签 |
思路1:DFS遍历图
选择任一点进行深度优先遍历,用一个vis数组记录一个点是否被遍历过,遍历完之后,检查vis数组,是否还有没有遍历过的点,如果有,则不连通,反之连通;
采用邻接矩阵存储 ,时间复杂度:O(n^2)
/*
* @Author: Spare Lin
* @Project: AcWing2022
* @Date: 2022/7/6 22:32
* @Description: 3587. 连通图 来源:吉林大学考研机试题
*/
#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;
const int MAXN = 1e3 + 7;
int g[MAXN][MAXN], n, m;
bool vis[MAXN];
void dfs(int u) {
vis[u] = true;
for (int i = 1; i <= n; ++i) {
if (g[u][i] != 0 && !vis[i]) //若还未访问当前节点 且边的权值不为0
dfs(i);
}
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
while (cin >> n >> m) {
//每组输入之前初始化邻接矩阵和访问数组
memset(g, 0, sizeof(g));
memset(vis, false, sizeof (vis));
while (m--) {
int x, y;
cin >> x >> y;
g[x][y] = g[y][x] = 1; //初始化边权为1
}
dfs(1);
int i;
for (i = 1; i <= n; ++i) {
if (!vis[i]) {
break;
}
}
cout << (i <= n ? "NO\n" : "YES\n");
}
return 0;
}
思路2:并查集
依次判断每个结点的父节点是否相同
/*依次判断每个结点的父节点是否相同*/
#include <iostream>
using namespace std;
const int MAXN = 1e3 + 7;
int p[MAXN], n, m;
int find(int x) {
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}
int main() {
while(cin >> n >> m) {
for (int i = 1; i <= n; ++i) {
p[i] = i;
}
while(m--) {
int x, y;
cin >> x >> y;
int fx = find(x), fy = find(y);
if(fx != fy) p[fx] = fy;
}
bool flag = false;
int ans = p[find(1)];
for (int i = 2; i <= n; ++i) {
if(p[find(i)] != ans) {
flag = true;
break;
}
}
cout << (flag ? "NO\n" : "YES\n");
}
return 0;
}