机器学习理论小杂库
文章平均质量分 67
真是喵啊
未来的专家
展开
-
数据标准化
数据标准化在数据分析之前,我们通常需要先将数据标准化,利用标准化后的数据进行数据分析。数据标准化的常用方法有三种“最小-最大标准化”(也叫离差标准化)、“Z-score标准化”和“按最小数定标标准化”最小-最大标准化y=(X−Xmin)/(Xmax−Xmin)y=(X-Xmin)/(Xmax-Xmin)y=(X−Xmin)/(Xmax−Xmin)优点:有效消除量纲(量纲是指物理量的基本属性),将数据有效的映射到[0,1]区间,能够实现不同数据之间的比较缺点:当数据明显集中到某个值上时,转换后原创 2021-11-15 23:00:26 · 2347 阅读 · 0 评论 -
吃透python——Scikit-Learn数据建模 基础流程概要
吃透python——Scikit-Learn数据建模一、基本介绍sklearn具有分类、回归、聚类、数据降维、模型选择、数据处理六大功能。sklearn中具有用于监督学习和无监督学习的基本方法。sklearn中的函数大致可以分为两类,分别是估计器和转换器。估计器就是模型,用于对数据的预测和回归,转换器就是对数据的处理,如标准化、数据将为及特征选择等。估计器中通常具有三个函数: fit() socre() predict()。 fit()函数用于训练模型 score()函数用于对模型评分 pre原创 2021-11-15 22:22:40 · 2620 阅读 · 0 评论 -
ROC曲线含义 绘制 解读,AUC指标
ROC与AUC的含义绘制与解读1.ROC曲线ROC曲线是研究学习其泛化性能的有效工具,体现综合考虑学习器在不同任务下“期望泛化性能”的好坏。ROC曲线的纵轴是“真正例率”TPR(true positive rate)和“假正例率”FPR(false positive rate)TPR=TP/(TP+FN)TPR=TP/(TP+FN)TPR=TP/(TP+FN)FPR=FP/(TN+FP)FPR=FP/(TN+FP)FPR=FP/(TN+FP)真正例率:真正例在所有实际正例中占比 (正原创 2021-11-12 23:54:38 · 2936 阅读 · 0 评论