limit
SELECT * FROM emp LIMIT 2;#展示前两条记录
SELECT * FROM emp LIMIT 0,4;#0为从1(n+1)行开始,4为展示四行
order by
SELECT * FROM emp ORDER BY sal ;#排序 默认升序 字典顺序 数字按照数字本身升序
SELECT * FROM emp ORDER BY sal DESC;#降序
条件查询结束
统计
SELECT *FROM emp WHERE YEAR(hiredate)<2017;
SELECT *,YEAR(NOW())-YEAR(hiredate)  年限 FROM emp;
SELECT *,sal*13+IFNULL(comm,0)*13  年薪 FROM emp;
聚合函数
概述:把一列值聚合在一起,再做分析
包括:max() min() avg() sum() count()
SELECT MAX(sal) FROM emp;#查最大值
SELECT MIN(sal) FROM emp;#查最小值
SELECT AVG(sal) FROM emp;#求平均数
SELECT SUM(sal) FROM emp;#求和
SELECT COUNT(*) FROM emp;#求个数
SELECT COUNT(1) FROM emp;
SELECT COUNT(comm) FROM emp;#null不统计
查询时出现了混合现象:同时查询聚合列与非聚合列
此时按照非聚合列分组
分组
group by
SELECT deptno,MAX(sal) FROM emp GROUP BY deptno;#分组
SELECT job,MAX(sal) FROM emp GROUP BY job;
SELECT YEAR(hiredate)  ,COUNT(YEAR(hiredate)) FROM emp GROUP BY YEAR(hiredate);
分组后使用having过率
SELECT deptno,COUNT(1) FROM emp GROUP BY deptno HAVING COUNT(1)>1;
where之后不可以使用聚合函数
事务
概念
保证多个操作,要么全成功,要么全部失败
四个特性(ACID):
原子性 多个操作绑定在一起,要么全成功,要么全部失败
一致性 再多个系统中,保证数据一致
隔离性 在保证性能的同时隔离了用户的操作
持久性 对数据的操作有持久影响
隔离级别
读未提交:性能最好 安全性最差 可能会发生并发数据问题
读提交:(Oracle默认级别)牺牲了效率,提高了安全性
可重复读:(MySQL默认级别) 安全性较好,性能一般
串行化:表级锁,读写都加锁,效率低下,安全性高,不能并发
开启事务:start transaction
结束事务:commit (提交事务)√
rollback(回滚事务)
字段约束
给字段添加约束,字段的值都有了要求
包括: 主键 唯一 非空 外键 默认 检查
默认约束default:
CREATE TABLE ppp(
id INT PRIMARY KEY AUTO_INCREMENT,
sex VARCHAR(6) DEFAULT '男'
);
检查约束check:
CREATE TABLE a(
id INT PRIMARY KEY AUTO_INCREMENT,
age INT,
CHECK(age>0 AND age<=100)
);
                
                  
                  
                  
                  
本文详细介绍了SQL查询的基本语法,包括LIMIT用于限制查询结果数量,ORDER BY进行排序,以及各种条件查询。此外,还探讨了统计函数如MAX、MIN、AVG、SUM和COUNT在数据聚合中的应用。在分组查询方面,通过GROUP BY和HAVING子句实现数据分组和过滤。同时,解释了事务处理的重要性,特别是其ACID特性,并讨论了不同隔离级别的应用场景。最后,提到了字段约束,如默认值和检查约束,确保数据的完整性和一致性。
          
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
              
            
                  
					1160
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
            


            