了解拓补排序前,我们先回顾离散数学中关于偏序和全序的定义:
若集合X上的关系R是自反的、反对称的和传递的,则称R是集合X上的偏序关系。
设R是集合X上的偏序(Partial Order),如果对每个x,yEX必有xRy或yRx,则称R是集合X上的全序关系。
· 直观地看,偏序指集合中仅有部分成员之间可比较,而全序指集合中全体成员之间均可比较。
那么什么是拓扑排序(Topological Sort)?我们说,由某个集合上的一个偏序得到该集合上的一个全序,这个操作称之为拓扑排序。
我们知道,用顶点表示活动,用弧表示活动间的优先关系的有向图称作顶点表示活动的网,英文即Activity On Vertex Network ,简称AOV-网。
在这个网中,从顶点i到顶点j有一条有向路径,则i是j的前驱;j是i的后继。若<i,j>是网中的一条弧,那么i是j的直接前驱;j是i的直接后继。 可参考(b)来理解这句话。
(a)表示偏序,(b)表示全序。若在(a)的有向图上人为地加一个表示v₂≤v₃。的弧(符号“≤”表示v₂领先于v₃),则(a)表示的亦为全序,且这个全序称为拓扑有序(Topological Order),而由偏序定义得到拓扑有序的操作便是拓扑排序。
AOV-网特点:
1.AOV-网中的弧表示活动之间存在的某种制约关系。
2.AOV-网中不能出现回路。
- 典型AOV-网例题
对程序的数据流图来说,首先要判定所给定的AOV-网中是否存在环。检测方法就是对有向图构造其顶点的拓补有序序列,若网中所有的顶点都在他的拓扑有序序列中,则该AOV-网中必定不存在环,那么这样设计出来的流程图,工程可以正常进行。
先看简单的:
- 某a专业学生必学课程AOV-网
基本思想:
(1)从AOV网中选择一个没有前驱的顶点并且输出;
(2)从AOV网中删去该顶点,并且删去所有以该顶点)为尾的弧;
(3)重复上述两步,直到全部顶点都被输出,或AOV-网中不存在没有前驱的顶点。
·拓扑排序后,有向图有如下两个拓扑有序序列:
拓扑序列:C1 , C2 , C3 , C4 , C5 , C6
拓扑序列:C1 , C2 , C3 , C4 , C5 , C6 ,C7
-
设计数据结构:
(1).图的存储(利用邻接表存储,在顶点表中增加一个入度域in)
(2).栈M(存储所有无前驱的顶点。也可以用队列。)
步骤:扫描顶点表,将堆栈初始化。将入度为0的顶点B,E压入堆栈。
弹出堆栈,取出栈顶元素E;根据顶点E的firstEdge遍历所有的边,将其所指向的各个顶点的入度值-1。
在处理时,如果发现某个顶点的入度值为0,则压入堆栈。 -
核心代码:
拓扑排序算法—伪代码
1.栈M初始化;累加器count初始化;
2.扫描顶点表,将没有前驱的顶点压栈;
3.当栈M非空时循环
3.1 Vj=退出栈顶元素;输出Vj;累加器加1;
3.2将顶点Vj的各个邻接点的入度减1;
3.3将新的入度为0的顶点入栈;
4.if (count<vertexNum)输出有回路信息;
void ALGraph::TopologicalSort(){
for(int i=0;i<vertexNum;i++){
//in为0则压栈
if(adjList[i].in==0){
s.push(adjList[i]);
}
}
while(!s.empty()){
//循环终止条件:栈为空
vertexNode v=s.top(); //弹栈输出
s.pop();
cout<<v.vertex<<" ";
count++; //计数加一
ArcNode *a=v.firstEdge;
while(a){
//对弹出的结点遍历,所有遍历过的结点的in-1
adjList[a->adjvex].in--;
int tmp=adjList[a->adjvex].in;
if(tmp==0){
//如果某结点的in变为0,则将其压栈
s.push(adjList[a->adjvex]) ;
}
a=a->next;
}
}
if(count<vertexNum) cout<<"有环"<<endl; //如果计数小于顶点数则说明有环
else cout<<"无环,成功完成"<<endl;
}
- 完整代码
#include<iostream>
#include<stack>
#include<cstring>
#define MAX 100
using namespace std;
typedef struct ArcNode{
//边结点
int adjvex; //顶点下标
ArcNode *next;
}ArcNode;
typedef struct{
int in; //in是入度
string vertex; //顶点信息
ArcNode *firstEdge;
}vertexNode,VertexNode[MAX];
class ALGraph{