GIF图片怎么压缩?如何快速缩小GIF图片?

我们在浏览微信公众号的时候经常会看到很多公众号文章都会用GIF图片进行配文,因为GIF图片配文非常生动有趣,能够有效的提升用户阅读体验感。但是在编辑公众号推文的时候发现,最大可上传10M以内的图片文件,有些GIF图片太大无法上传使用,那么怎么才能缩小GIF图片的体积呢?别急,接下来我就为大家推荐一款**动图在线压缩**(https://www.yasuotu.com/)软件,无需下载,在线即可操作。步骤如下:
1、打开浏览器进入网站首页,点击“GIF压缩”选择图片压缩,上传需要压缩的图片。
在这里插入图片描述

2、图片上传完成后,在上方的菜单栏里选择尺寸、宽、高、帧数抽取、压缩等级输入参数(抽取一定得帧数可以压缩图片的体积;压缩等级越小,压缩后的图片文件越小。)完成后点击“开始压缩”。
在这里插入图片描述

3、压缩完成后,点击“保存图片”即可。
在这里插入图片描述

通过以上GIF图片压缩教程,我们可以看到压缩后的图片体积小了许多。大家根据步骤来就可以快速对GIF图片进行压缩。这款动图压缩软件不仅可以压缩GIF图片,同时还支持GIF图片制作、GIF图片裁剪、视频转GIF等功能;感兴趣的小伙伴可以打开网站体验一下。

相关推荐
<p> 需要学习Windows系统YOLOv4的同学请前往《Windows版YOLOv4目标检测实战:原理与源码解析》, </p> <p> 课程链接 https://edu.csdn.net/course/detail/29865 </p> <h3> <span style="color:#3598db;">【为什么要学习这门课】</span> </h3> <p> <span>Linux</span>创始人<span>Linus Torvalds</span>有一句名言:<span>Talk is cheap. Show me the code. </span><strong><span style="color:#ba372a;">冗谈不够,放码过来!</span></strong> </p> <p> <span> </span>代码阅读是从基础到提高的必由之路。尤其对深度学习,许多框架隐藏了神经网络底层的实现,只能在上层调包使用,对其内部原理很难认识清晰,不利于进一步优化和创新。 </p> <p> YOLOv4是最近推出的基于深度学习的端到端实时目标检测方法。 </p> <p> YOLOv4的实现darknet是使用C语言开发的轻型开源深度学习框架,依赖少,可移植性好,可以作为很好的代码阅读案例,让我们深入探究其实现原理。 </p> <h3> <span style="color:#3598db;">【课程内容与收获】</span> </h3> <p> 本课程将解析YOLOv4的实现原理和源码,具体内容包括: </p> <p> - YOLOv4目标检测原理<br /> - 神经网络及darknet的C语言实现,尤其是反向传播的梯度求解和误差计算<br /> - 代码阅读工具及方法<br /> - 深度学习计算的利器:BLAS和GEMM<br /> - GPU的CUDA编程方法及在darknet的应用<br /> - YOLOv4的程序流程 </p> <p> - YOLOv4各层及关键技术的源码解析 </p> <p> 本课程将提供注释后的darknet的源码程序文件。 </p> <h3> <strong><span style="color:#3598db;">【相关课程】</span></strong> </h3> <p> 除本课程《YOLOv4目标检测:原理与源码解析》外,本人推出了有关YOLOv4目标检测的系列课程,包括: </p> <p> 《YOLOv4目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4-tiny目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4目标检测实战:人脸口罩佩戴检测》<br /> 《YOLOv4目标检测实战:中国交通标志识别》 </p> <p> 建议先学习一门YOLOv4实战课程,对YOLOv4的使用方法了解以后再学习本课程。 </p> <h3> <span style="color:#3598db;">【YOLOv4网络模型架构图】</span> </h3> <p> 下图由白勇老师绘制 </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202006291526195469.jpg" /> </p> <p>   </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202007011518185782.jpg" /> </p>
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页