带你玩转单细胞—单细胞基础分析(质控、标准化、降维聚类)
当我们把原始的单细胞表达量矩阵读取到R语言并使用Seurat将它转化成object之后,后续要做的就是“套路”样式的基础分析。下面对标准化的基础分析流程进行详细的讲解:
1.数据质控
只要是做过生信的,应该都知道数据质控的重要性了,代码其实很简单,但是在做一件事情之前,我们得明白为什么要做这件事?
我们知道,单细胞测序是对样本进行解离后,对每个细胞都进行测序,在取到新鲜样本(这里就只讨论新鲜样本,FFPE等样本不在讨论范围)后到送样处理的过程中,虽然有组织保存液保存样本的细胞活性,但是肯定还会存在一定的细胞会凋亡,并且在实验到上机的每一步都不可避免的产生细胞损耗,质控的作用就是尽可能的去过滤掉这些损耗的细胞。
先上代码:
`Sc_obj[["percent.mt"]] <- PercentageFeatureSet(Sc_obj, pattern = "^MT-")
VlnPlot(Sc_obj, features = c("nFeature_RNA", "nCount_RNA", "percent.mt"), ncol = 3)
pbmc <- subset(Sc_obj, subset = nFeature_RNA > 200 & nFeature_RNA < 2500 & percent.mt < 5)`
上述代码分为三步,首先是计算出percent.mt(线粒体基因)指标,然后通过