- 博客(18)
- 收藏
- 关注
原创 人工智能——层次聚类算法
本章实现的工作是:首先导入20名学生的3科成绩,然后根据优先聚合距离最近的两个数据组的聚类标准,得到由20名学生划分成的不同簇类。本章掌握的技能是:1、使用 SciPy 包计算欧式距离。2、使用 dendrogram 画出聚类树图。3、使用 matplotlib 包实现数据可视化,绘制热度图。
2025-05-03 17:19:27
1165
2
原创 人工智能——DBSCAN 聚类算法
本章实现的工作是:首先导入100位学生的数学成绩、英语成绩,然后建立 DBSCAN 模型,配置模型参数,对样本数据进行聚类,得到学生聚类后的类别数和每个学生的标签值,最后将聚类结果可视化。本章掌握的技能是:1、使用 DBSCAN 函数实现数据聚类。2、使用 matplotlib 库实现数据的可视化,绘制图形。
2025-05-01 18:50:47
858
原创 人工智能—— K-means 聚类算法
本章实现的工作是:首先采用Python语言读取样本数据(学生的语文、数学成绩)。然后建立 K-means 聚类算法模型并求解模型(得到质心坐标),同时得到每个样本点所属的簇。在二维平面中绘制样本点,样本点的形状由上述聚类的结果决定,最后画出质心。本章掌握的技能是:1、掌握Python求解欧式距离的方法。2、掌握求解 K-means 模型的方法。3、使用Matplotlib 库实现聚类结果的可视化。
2025-04-27 22:22:31
1290
2
原创 人工智能——XGBoost 算法
本章实现的工作是:首先pandas库读取含有英语成绩、数学成绩以及学生所属类型的样本数据。然后将样本数据划分为训练集和测试集,接着采用XGBoost算法,对训练集数据进行拟合,最后使用Matplotlib库实现数据的可视化,绘制散点图。本章掌握的技能是:1、使用NumPy包读取连续的样本数据。2、使用XGBoost库的XGBoost函数进行回归计算和预测计算。3、使用Matplotlib库实现数据的可视化,绘制树状图。
2025-04-27 20:17:59
821
原创 人工智能——梯度提升决策树算法
本章实现的工作是:首先采用Python语言读取含有英语成绩、数学成绩以及学生所属类型的样本数据。然后将样本数据划分为训练集和测试集,接着采用GBDT算法,对训练集数据进行拟合,最后在输入更多学生的数学成绩和英语成绩后,使用已求解的最优模型去预测其分类结果。本章掌握的技能是:1、使用NumPy包读取连续的样本数据。2、使用sklearn库model_selection模块中的model_selection函数实现训练集和测试集的划分。3、使用Matplotlib实现数据的可视化,绘制树状图。
2025-04-16 22:55:56
1061
原创 人工智能——AdaBoost算法
本章实现的工作是:首先采用Python语言读取数据并构造训练集和测试集。然后建立AdaBoost模型,利用训练集训练该模型,接着优化最大迭代次数,得到AdaBoost优化模型,求解得到每个弱分类器G(x)和它的权重α,进而得到最终的分类器,实现计算模型准确率,最后将预测的分类结果可视化。本章掌握的技能是:1、使用os库改变工作目录。2、使用pandas库读取数据。3、使用train_test_split函数构建训练集和测试集。4、使用matplotlib库实现数据的可视化,绘制分类图。5、使用sklea
2025-04-08 21:08:07
1162
原创 人工智能——随机森林算法
本章实现的工作是:首先采用Python导入含有600个学生的英语成绩、数学成绩以及学生所属类型(文科生、理科生、综合生)的样本数据。然后建立随机森林分类模型,利用训练样本训练该模型,得到6棵决策树,进而采用改进后的随机森林分类模型对待测样本数据进行预测。最后将预测结果进行展示。本章掌握的技能是:1、使用NumPy库实现对样本数据的读取。2、使用sklearn库实现训练集和测试集的划分。3、使用sklearn库中的随机森林分类算法解决分类问题。4、使用Pydotplus库实现数据的可视化,绘制树形图。5、
2025-04-05 15:51:31
2298
2
原创 人工智能——支持向量机算法
本章实现的工作是:首先导入含有学生语文成绩、数学成绩和学生所属类别(文科生、理科生和综合生)的样本数据,利用Python语言中的iloc方法将样本划分为训练集和测试集。然后调用 SVM 方法集中的SVC算法创建支持向量机分类器(SVC)模型,接着输入训练数据,求解支持向量机分类器模型,进而在输入更多学生的语文成绩和数学成绩时,能利用已求解的支持向量机分类器模型预测其分类结果,最后将预测结果进行可视化展示。本章掌握的技能是:1、使用Python读取 CSV 文件中的数据。2、使用iloc方法划分训练集和
2025-04-05 13:46:53
1120
2
原创 人工智能——决策树
本章实现的工作是:首先使用Python导入学生英语、数学成绩及学生所属类别(文科生、理科生、综合生)的样本数据。然后分别采用 ID3 和 CART 决策树算法,对样本数据进行模型拟合,求出各属性值的信息增益或基尼系数,进而求解决策树模型,并采用求解后的模型进行预测。最后将训练样本与测试样本进行展示。本章掌握的技能是:1、使用Python导入学生成绩的数据。2、使用 pydotplus包配置决策树绘制方法的参数。3、使用 sklearn 中决策树分类工具实现 ID3 和 CART 决策树模型建立、求解与
2025-04-04 22:49:24
1132
2
原创 人工智能——贝叶斯算法
本章实现的工作是:首先采用Python语言生成单词词组,然后采用贝叶斯算法,对样本数据进行计算得到每个单词出现的概率。进而采用贝叶斯模型对待分类的邮件进行判断,最后将判断结果进行展示。本章掌握的技能是:1、构造并使用朴素贝叶斯分类器。2、使用sklearn模块中的naive_bayes库进行文本分类。
2025-04-04 18:52:12
549
原创 人工智能——逻辑回归算法
本章实现的工作是:首先导入样本数据,包括学生的语文、数学、英语成绩及学生所属类别(文科生,理科生、综合生),并划分训练集与测试集。然后采用逻辑回归算法,用样本数据构建回归模型,进而利用模型和更多学生的成绩进行分类预测。最后将预测与真实类别标签值进行对比显示,检验模型的预测正确率。本章掌握的技能是:1、读取样本数据并划分样本为训练集与测试集。2、使用LogisticRegressionCV模块构建逻辑回归模型。3、使用matplotlib库绘制散点图,实现数据的可视化。
2025-04-04 18:51:29
2073
2
原创 人工智能——分类算法
本章实现的工作是:首先用Python导入包含学生成绩和学生类别的样本数据,然后采用 K 近邻分类算法,配置算法模型中的 k值,以 N 维空间的欧式距离为度量标准,求解待分类学生样本的预测标签。将预测标签与真实标签进行对比得出分类结果准确率。最后将预测结果可视化。 本章掌握的技能是:1、通过编写 KNN 算法的底层代码,实现 KNN 算法模型的构建及参数配置,对样本数据进行预测分类并计算分类结果准确率。2、使用sklearn模块中的neighbors最近邻模块,导入其中的 KNeighborsClassi
2025-04-02 21:13:39
2107
2
原创 AI 人工智能的发展趋势
你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Markdown编辑器, 可以仔细阅读这篇文章,了解一下Markdown的基本语法知识。我们对Markdown编辑器进行了一些功能拓展与语法支持,除了标准的Markdown编辑器功能,我们增加了如下几点新功能,帮助你用它写博客:撤销:Ctrl/Command + Z重做:Ctrl/Command + Y加粗:Ctrl/Command + B斜体:Ctrl/Command + I标题:Ctrl/Command + S
2025-04-02 18:20:22
922
原创 人工智能——多元线性回归
本章实现的工作是:首先采用Python语言导入3只股票的价格数据,并将数据划分为训练集和测试集。然后采用二元线性回归算法,对样本训练进行回归计算,得到回归系数。进而采用二元线性回归模型对测试样本进行预测。最后对预测结果进行可视化展示。本章掌握的技能是:1、使用Python导入样本数据,使用loc,iloc方法将样本数据划分为训练集和测试集数据。2、使用NumPy库中的线性回归函数进行回归计算和预测计算。3、使用Matplotlib库实现回归结果的可视化,绘制散点图、折线图、3D图。
2025-04-01 23:15:39
892
2
原创 人工智能——线性回归
本章实现的工作是:首先采用Python语言生成时间一股票价格的样本数据。然后采用一元线性回归算法,对样本数据进行回归计算,得到回归系数。进而生成更多时刻点,并采用一元线性回归模型进行预测,最后将预测结果进行显示。
2025-03-31 22:18:55
989
2
原创 人工智能——缺失值填充
首先使用 Python 语言导入学生语文、英语、数学成绩的样本数据。然后分别使用均值填充、前后采样填充和机器学习(MLP神经网络算法) 填充3种方法对输入数据进行处理,进而得到填充缺失值后的样本数据。 本章掌握的技能是:1.使用Python导入学生成绩数据CSV文件;2、使用均值填充、前后采样填充的方法实现缺失值的填充;3、使用MLP算法中的MLPClassifier多层感知器分类器实现缺失值的填充;4、使用 iloc[]方法实现所需的数据提取;5、使用Python实现填充后样本数据的展示。
2025-03-29 20:11:27
1125
原创 人工智能——数据结构与数据预处理
熟练使用Python中常见的8类数据结构:元组(tuple),列表(list),数组(ndarray),矩阵(matrix),集合(set),字典(dict),序列(Series),数据框(DataFrame)。实现各类数据结构的创建、元素的增、删、改、查,不同数据结构之间的相互转换以及各种数据结构的特色操作,实现数据可视化。
2025-03-15 22:00:26
936
原创 人工智能——Python编程基础
掌握Python语言的分支、循环语句和函数的使用。应用分支、循环语句和函数实现简单程序的编写,如简单的四则运算和阶乘。
2025-03-13 21:58:27
642
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人