- 博客(54)
- 收藏
- 关注
原创 选择图片的区域部分进行特征提取
SIFT所查找的关键点都是一些十分突出,不会因光照,仿射变换和噪声等因素而变换的特征点,如角点、边缘点、暗区的亮点以及亮区的暗点等。
2024-04-16 20:58:01 325
原创 机器学习 协同过滤算法
协同过滤算法是根据已有的数据来推测出未知的数据,从海量的数据中找到相似度达到指定范围的数据,而这些数据成为你的邻居,系统将会为你推荐心仪的物品。
2023-04-24 22:07:53 234 1
原创 OpenCv 图像金字塔进行图像混合
利用图像金字塔进行图像混合,即实现实现自然过渡,又避免损失清晰度,加载两张要处理的图像,注意n层金字塔,要求图像大小是2的n次方的整数。
2023-04-01 14:14:07 291
原创 OpenCV 图像金字塔
在某些情况下,我们需要在不同的分辨率下处理(相同的)图像;例如,当在图像中搜索某个东西时,比如人脸,我们不确定该对象在该图像中的大小,在这种情况下,我们需要创建一组具有不同分辨率的相同图像,并在所有这些图像中搜索对象,这些具有不同分辨率的图像集被称为图像金字塔。
2023-04-01 11:33:48 346
原创 Tensorflow 卷积层实现
在TensorFlow中,可以通过自定义权值的底层实现方式搭建神经网络,也可以直接调用现成的卷积层类的高层方式快速搭建复杂网络。
2022-12-17 22:18:25 1058
原创 Tensorflow 维度变换
在神经网络运算过程中,维度变换是最核心的张量操作,通过维度变换可以将数据任意地切换形式,满足不同的运算需求。算法的每个模块对于数据张量的格式有不同的逻辑要求,当现有的数据格式不满足算法要求时,需要通过维度变换将数据调整为正确的格式,这就是维度变换的功能。基本的维度变换操作函数包含改变视图reshape、插入新维度expand_dims、删除维度squeeze、交换维度transpose、复制数据tile等函数。
2022-12-06 17:51:10 1829
原创 纹理特征描述及matlab实现
纹理特征描述图像或图像区域所对应景物的表面性质,是图像中计算出来的一个值,它对区域变化的特征进行量化。纹理分析是通过一定的图像处理技术抽取纹理特征,从而获得纹理的定量或定性描述的处理过程。
2022-11-16 15:29:06 6823 2
原创 颜色模型转换(matlab)
ycbcrmap = rgb2ycbcr(map):将RGB空间颜色映射到YCbCr空间中。map是一个m×3的矩阵,ycbcrmap也是一个m×3的矩阵,矩阵分别表示亮度Y和两种色差Cb、Cr。cmap = rgb2hsv(M):矩阵大小为m×3阶矩阵,元素取值在[0,1]之间。输入矩阵M的列分别表示红色、绿色和蓝色的强度,输出矩阵cmap的列分别表示色调、饱和度和亮度。YCBCR = rgb2ycbcr(RGB):将RGB彩色图像转换成对应的YCbCr空间图像,RGB必须是m×n×3矩阵。
2022-11-07 21:13:26 1508
原创 图像Radon变换与傅里叶变换(matlab)
图像变换是将图像从空间域变换到变换域。图像变换的目的是根据图像在变换域的某些性质对其处理。通常这些性质在空间域内很难获取。在变换域内处理结束后,将处理的结果进行反转变换到空间域。我们所看到的图像是在空域上的,其信息具有很强的相关性,所以经常将图像信息通过某种数学方式变换到其他正交矢量空间上。一般称原始图像为空间域图像,称变换后的图像为变化域图像,变换域的图像可反变换为空间域图像。变换后的图像,一方面能够有效的反映图像自身特征,另一方面也可使能量集中在少量数据上,有利于图像存储、传输及处理。
2022-11-04 20:11:04 4773 1
原创 贝叶斯估计实验(matlab)
由于生活中很多参数如测量误差、产品质量指标等几乎都服从或近似服从正态分布,所以可以用对单变量正态分布中的贝叶斯估计进行分析并编写相应的Matlab程序,分析样本大小对贝叶斯估计误差的影响,进而验证贝叶斯估计的有效性。1、实验一:可以看出贝叶斯的估计值为19.25%,与真实值的误差值较大,这是由于样本数量较少,导致先验信息不够,最终估计值与真实值存在较大的误差。4、以上叙述生成的样本为基础,继续添加服从同样的正态分布的样本数据集,探索贝叶斯估计值和样本大小的关系。}z是取自正态分布N(μ,σ。
2022-11-02 20:15:36 5144 1
原创 基于最大似然估计(matlab实验)
在逻辑分类的代价函数的推导过程中使用了最大似然估计,但最大似然估计求的是最大值,而代价函数求得是最小值,因此只差一个负号,这里的代价函数其实是一个交叉熵。除了梯度下降算法,还可以使用BFGC(变换度法)、L-BFGS(限制变尺度法),这些算法的优点是可以自动选取好得学习率,通常比下降算法要快的多,但也比较复杂。2、针对二分类问题,采用matlab编程,得到分类结果,实验通过程序,分析,加深对逻辑回归分类问题的理解。第一、二列是入学前考试的成绩,第三列为是否可以入学:1(可以),2(不可以)
2022-10-31 21:51:44 5612 1
原创 机器学习实战 泰坦尼克号生存预测
PassengerId: 乘客IDSurvived: 是否生存,0代表遇难,1代表还活着Pclass: 船舱等级:1Upper,2Middle,3LowerName: 姓名Sex:性别Age: 年龄SibSp: 兄弟姐妹及配偶个数Parch:父母或子女个数Ticket: 乘客的船票号Fare: 乘客的船票价Cabin: 乘客所在的仓位(位置)Embarked:乘客登船口岸。
2022-10-29 16:31:20 2366
原创 图像分割(matlab)
图像分割是将一幅数字图像分割成不同区域,在同一区域内具有在一定的准测下可认为是相同的性质,如灰度、颜色、纹理等,而任何相邻区域之间其性质具有明显的区别,主要包括边缘分割技术、阈值分割技术和区域分割技术。
2022-10-28 20:26:04 6577
原创 基于最小风险判决规则(matlab实验)
最小风险判决规则即在考虑最小错误进行判决得条件下,考虑判决带来得风险。主要流程首先计算出样本的各类后验概率,在已知风险矩阵条件下求解各类判决条件的风险,比较各类风险后进行样本归类,本次实验采用细胞的类型判决,计算出正常细胞与异常细胞的判决风险,并进行分类判决。
2022-10-26 20:15:11 982
原创 基于最小错误率的贝叶斯决策(matlab实验)
由于每一类样本都相等,且每一类选取用作训练样本也相等,在每两组进行分类时,待分类样本的类先验概率P(w)=0.5,将各个样本代入判别函数,根据判别规则,gi(X)>gj(X),对于一切 j ≠ i成立,则X归为Wi类。由图可得:蓝色为第一类,红色为第二类,绿色为第三类,明显第一类与第二、三类的差异很大,而第二类与第三类的差别较小,对于位于第二、三类附近的样本,使用最小错误率贝叶斯决策时,可能会有出错的概率。1、取第一类样本后十个数据,进行W1和W2进行分类:t1 = 10,t2=0,分类正确;
2022-10-25 22:23:42 4865 1
原创 图像复原方法(matlab)
图像复原的常用方法主要包括:逆滤波复原、维纳滤波复原、约束最小二乘法复原、Lucy-Richardson复原和盲解卷积复原。
2022-10-24 21:12:55 12656 2
原创 Linux 用户和用户组管理
第四字段:GID(用户初始组ID),初始组:用户一登录就立刻拥有这个用户组的相关权限,每个用户只能有一个初始组,一般和这个用户的用户组名相同的组名作为这个用户的初始组;第三字段:UID(用户),0:超级用户,1 - 499:系统用户(伪用户),500 - 65535:普通用户。第七字段:密码过期后的宽限天数,0:代表密码过期立即生效,-1:代表密码永远不会生效。普通用户:/home/用户名/,所有者和所属组都是此用户,权限700。超级用户:/root/,所有者和所属者都是root用户,权限550。
2022-10-23 12:42:08 402
原创 图像噪声模型(matlab)
在图像的采集、传送和转换过程中,会添加一些噪声,表现为图像模糊、失真和有噪声等。图像复原就是尽可能恢复退化图像的本来面目,沿用图像退化的逆过程进行处理。图像复原技术是根据图像退化的先验知识建立一个退化模型,以此模型为基础,采用各种逆退化处理方法进行恢复,得到质量改善的图像。图像复原技术主要包括图像的噪声模型、图像的滤波模型及常用的图形复原方法。
2022-10-21 21:35:45 2787
原创 Linux 文件处理文件
文件系统的最顶层是由根目录开始的,系统使用“/”来表示根目录,在根目录之下的既可以是目录,也可以是文件,而每一个目录中又可以包含(子)目录或文件。在文件系统中,有两个特殊的目录,一个是用户所在的工作目录,即当前目录,可用一个点“.”表示;硬链接:文件的基本信息都存储在 inode 节点中,而硬链接指的就是给一个文件的 inode节点分配多个文件名,通过任何一个文件名,都可以找到此文件的 inode,从而读取该文件的数据信息,同步更新,不能跨分区,不能对目录使用。删除标记是u-s、g-s、o-t。
2022-10-21 00:17:18 819
原创 频域滤波(matlab)
设f(x,y)为原始图像函数,h(x,y)为滤波器脉冲响应函数,则空域内的滤波是基于卷积运算的:g(x,y) = f(x,y)*h(x,y),其中h(x,y)可以是低通或高通滤波,g(x,y)为空域滤波的输出图像函数,根据卷积定理,上式的傅里叶变换如下:G(u,v) = F(u,v)H(u,v)。频域滤波的关键是G(u,v)的设计。进行傅里叶变换:F{z(x,y)} =F{ln[f(x,y)]}=F{ln[i(x,y)]}+F{ln[r(x,y)]},即为Z(u,v) = I(u,v)+R(u,v)
2022-10-18 20:05:01 6374 1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人