AI在行业中落地的思考与实践

引言部分

在当今快速发展的技术时代,人工智能(AI)已经成为推动社会进步和经济发展的关键力量。从医疗健康、金融服务到智能制造,AI的应用前景广阔,其潜力无限。然而,AI的落地应用并非一帆风顺,它面临着技术理解、数据获取、行业经验等多方面的挑战。本文旨在深入探讨AI落地的思考与实践,通过分析AI落地的三大要素、垂直领域落地的路径以及AI在业务流程中的融合与创新,提出有效的策略和解决方案,以促进AI技术的实际应用和产业化进程

AI行业落地三要素

在这个信息爆炸的时代,AI技术的快速发展正引领着一场未来工作和生活方式的革命。要想让AI技术真正“落地”,我们需要关注三个关键要素:AI技术框架与模型能力理解、行业数据获取、以及丰富的行业经验和工作流知识。

AI技术框架与模型能力理解

首先,我们得谈谈AI技术框架及其模型能力边界的理解。这不仅仅是关于大模型与传统技术的融合,还涉及到对AI技术潜能的深刻洞察。大模型,例如GPT和BERT,已经显示出其在处理复杂数据时的巨大潜力,尤其是在理解和生成自然语言方面。但要充分发挥这些技术的力量,我们需要对它们如何与传统技术融合、特别是大模型/专有模型擅长或者不擅长有一个深刻的理解。

行业数据获取

接下来是行业数据的获取。不论是工业、医疗、制造还是政务,每个领域都有其独特的预训练数据集和专家标注过的数据集合。这些数据是AI模型学习和适应特定行业需求的基础。但获取这些数据并非易事,它要求我们有能力深入行业,理解其数据生成和收集的过程,以及如何有效地利用这些数据。

丰富的行业经验和工作流知识

最后,丰富的行业经验和对工作流的深入了解是AI落地不可或缺的一环。理论和技术是基础,但真正的挑战在于如何将AI技术应用到具体的业务流程中,实现价值最大化。这需要深入行业内部,理解其痛点和需求,从而设计出能够真正解决问题的AI解决方案。

综上所述,AI落地的三要素是相互关联、相辅相成的。没有深刻的技术理解,就无法有效利用行业数据;没有丰富的行业经验,就难以将AI技术有效融入工作流中。只有这三者齐头并进,我们才能真正推动AI技术的落地,创造出真正的商业和社会价值。

算法篇:垂直行业领域算法落地的两种路径

在AI技术落地的过程中,尤其是针对具体的垂直领域,存在两条主要的路径。这两种路径各有其优势和局限,选择哪一条往往取决于具体的应用场景、成本效益分析以及期望达到的精确度。

1. 在基础大语言模型上进行Fine-tuning

第一种路径是利用行业的垂直领域数据集,在基础大语言模型的基础上进行Fine-tuning,以此打造出一个精度更高的垂直领域大模型。这种方法的优点在于能够利用大模型强大的通用性能,通过相对较小的垂直领域数据集进行定制化调整,以适应特定的行业需求。这种方法适用于那些基础模型已经具有一定程度上的行业相关知识,但需要进一步优化以提高特定任务表现的场景。

2. 直接训练垂直领域的预训练模型

另一条路径则是直接使用垂直领域的数据训练一个规模较小的预训练模型。这种方法的优点是模型从一开始就专注于特定领域的知识,可能在该领域的特定任务上表现得更好。然而,这种方法的挑战在于需要大量的高质量垂直领域数据,且模型的通用性可能较差。

选择哪一种路径,需要基于对场景的具体分析。

过去,人工智能主要处理结构化数据,但人类社会的核心数据大多是非结构化的,这为AI技术的应用提供了更广阔的空间。

大模型的出现,使得我们能够以前所未有的方式处理这些非结构化数据,可以重构信息处理的链条和Pipeline和工作流,通过把语言、文字甚至结构化的时序数据纳入到基础模型中,实现了真正意义上的多模态理解和预测,下图是微软亚洲研究院在产业解决方案做的一些研究工作:

无论是金融领域的量价数据(数值类)和文本资讯类(文本类)数据,还是医疗领域的时序数据(数值类)和电子病历(文本类)等多模态数据,通过上述两种路径中的合适选择,AI都能够提供综合的预测或决策结果,大大推动行业的智能化进程。

在探索垂直领域落地的路径时,重要的是理解大模型不仅仅是一种技术工具,更是重构信息处理链条和工作流的新方式。随着技术的进步和应用场景的深入,选择合适的落地路径将成为实现AI价值最大化的关键。

数据篇:大模型的训练所需要的数据

要训练一个功能强大的AI大模型,我们需要三种主要类型的数据:用于预训练的广泛数据、用于对齐层面优化的高

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值