MapReduce的工作流程:map和reduce分别做了哪些工作,以及shuffle机制实现了什么

MapReduce是大数据处理的一种模型,主要包括map和reduce两个阶段。Map负责数据的预处理,如分片、分区、排序,而reduce则对map的输出进行规约和存储。Shuffle机制是两者间的桥梁,确保数据正确传递并排序。它涉及分区数据、环形缓冲区、溢写文件、归并排序及Combiner操作。
摘要由CSDN通过智能技术生成

一、map和reduce分别做了哪些工作

Map:待处理数据分片放入缓冲区,分区、排序、合并、归并,写入本地磁盘。将处理杂乱无章的数据,找出规律,归纳处理。

  (1)读取hdfs上的文件,每个block启动一个maptask,按行读取一个block中的内容。
(2)map函数对数据split拆分,得到数组,组成一个键值对<word,1>
(3)做分区对应多个reduceTask
(4)分区数据,按key分组排序
(5)在map端执行小reduce,一个map中输出<key,times>

Reduce:MoF文件拷贝,缓冲,(归并:数量大)规约,存储。输出。

 (1)每个分区对应一个reduce task,读取(所有map节点上的maptask)相同分区的所有输出
 (2) reduceTask对接受的所有map输出,排序
 (3) 执行reduce,对数据累加
 (4) 输出到hdfs上

二、shuffle机制实现了什么

Map阶段和Reduce阶段之间传递中间数据的过程,Reduce Task从Map Task 获取MOF文件的过程,以及对MOF 的排序与合并处理。(Map方法之后Reduce方法之前这段处理过程叫Shuffle)


     1.Map方法之后:数据首先进入到分区方法,将数据标记好分区,再把数据发送到环形缓冲区;环形缓冲区默认大小100m,环形缓冲区达到80%时,进行溢写;溢写前对数据进行排序,排序按照对key的索引进行字典顺序排序,排序的手段快排;溢写产生大量溢写文件,需要对溢写文件进行归并排序;对溢写的文件也可以进行Combiner操作,前提是汇总操作,求平均值不行。最后将文件按照分区存储到磁盘,等待Reduce端拉取。
     2.每个Reduce拉取Map端对应分区的数据。拉取数据后先存储到内存中,内存不够了,再存储到磁盘。拉取完所有数据后,采用归并排序将内存和磁盘中的数据都进行排序。在进入Reduce方法前,可以对数据进行分组操作

7fa475d4ed6d4b4796b4784d0399aad5.png

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值