一、map和reduce分别做了哪些工作
Map:待处理数据分片放入缓冲区,分区、排序、合并、归并,写入本地磁盘。将处理杂乱无章的数据,找出规律,归纳处理。
(1)读取hdfs上的文件,每个block启动一个maptask,按行读取一个block中的内容。
(2)map函数对数据split拆分,得到数组,组成一个键值对<word,1>
(3)做分区对应多个reduceTask
(4)分区数据,按key分组排序
(5)在map端执行小reduce,一个map中输出<key,times>
Reduce:MoF文件拷贝,缓冲,(归并:数量大)规约,存储。输出。
(1)每个分区对应一个reduce task,读取(所有map节点上的maptask)相同分区的所有输出
(2) reduceTask对接受的所有map输出,排序
(3) 执行reduce,对数据累加
(4) 输出到hdfs上
二、shuffle机制实现了什么
Map阶段和Reduce阶段之间传递中间数据的过程,Reduce Task从Map Task 获取MOF文件的过程,以及对MOF 的排序与合并处理。(Map方法之后Reduce方法之前这段处理过程叫Shuffle)
1.Map方法之后:数据首先进入到分区方法,将数据标记好分区,再把数据发送到环形缓冲区;环形缓冲区默认大小100m,环形缓冲区达到80%时,进行溢写;溢写前对数据进行排序,排序按照对key的索引进行字典顺序排序,排序的手段快排;溢写产生大量溢写文件,需要对溢写文件进行归并排序;对溢写的文件也可以进行Combiner操作,前提是汇总操作,求平均值不行。最后将文件按照分区存储到磁盘,等待Reduce端拉取。
2.每个Reduce拉取Map端对应分区的数据。拉取数据后先存储到内存中,内存不够了,再存储到磁盘。拉取完所有数据后,采用归并排序将内存和磁盘中的数据都进行排序。在进入Reduce方法前,可以对数据进行分组操作