- 博客(6)
- 收藏
- 关注
原创 【论文阅读】FusionAD: Multi-modality Fusion for Prediction and Planning Tasks of Autonomous Driving
2023年8月,Tengju Ye等人提出了FusionAD,与基于图像的端到端方法UniAD相比,FusionAD建立了一个融合辅助的模态感知预测和状态感知规划模块,称为FMSPnP。FusionAD是第一个统一的基于BEV多模态(融合来自两个最关键的传感器相机和LiDAR的信息)、多任务端到端学习框架,专注于自动驾驶的预测和规划任务。
2025-04-13 18:36:16
645
1
原创 open-mmlab:mmcv/mmdet/mmdet3d等的低版本安装(一周实测总结)
mmcv / mmdet / mmdet3d 等的低版本安装,一周总结,实测有效。
2025-04-12 00:10:16
1458
原创 UBUNTU+Anaconda+NVIDIA显卡驱动+CUDA+cudnn+PyCharm安装(全程顺畅!!主要参考博文与视频汇总)
UBUNTU+Anaconda+NVIDIA显卡驱动+CUDA+cudnn+PyCharm安装(全程顺畅!!主要参考博文与视频汇总)
2025-04-10 00:47:38
246
原创 【阅读笔记】(UniAD)Planning-oriented Autonomous Driving
文章提出了自动驾驶端到端框架UniAD,这是一个最新的综合框架,在一个网络中整合了全栈驾驶任务。该模型充分利用了各个模块的优点,并从全局的角度为Agent交互提供了互补的特征抽象。任务之间通过统一的查询接口进行沟通,便于彼此进行计划。
2025-02-20 21:13:36
1682
原创 【论文阅读】Model-Based Imitation Learning for Urban Driving
MILE:一种基于模型的模仿学习方法,用于共同学习世界模型和自动驾驶策略。该方法利用3D几何作为归纳偏差①,并直接从专家演示的高分辨率视频中学习高度紧凑的潜在空间;在离线的城市驾驶数据语料库上训练,与环境没有任何的在线交互。成果:当部署在一个全新的城镇和新的天气条件下时,MILE在CARLA模拟器上的驾驶分数比现有技术提高了31%。论文模型可以预测不同的和合理的状态和动作,并解码为鸟瞰图语义分割。①归纳偏差(Inductive bias)可以理解为一种,能够帮助我们在多个可能的模型中选择出一个。
2024-08-17 21:25:10
1946
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人