贪心算法——最优装载问题

任务描述

有一天,海盗截获了一艘装满各种各样古董的货船,每一件古董都价值连城,一但打碎就失去了价值,虽然海盗船足够大,但载重量为C,每件古董的重量为Wi,海盗们如何把尽量多的宝贝装上海盗船呢?

输入格式

第一行输入n,c,代表有n个古董和船的重量
第二行输入n个数,代表每个古董的重量。
1<n,c<100000
每个古董的重量不超过100

输出格式

输出一个数,代表最多装多少个古董

输入样例

8 30
4 10 7 11 3 5 14 2

输出样例

5

#include<stdio.h>

int w[100010];

int main()
{
	int s=0;//物品个数 
    int n,c;
    scanf("%d %d",&n,&c);
    for(int i=0;i<n;i++)
    {
        scanf("%d",&w[i]);
    }
    
    //重量从小到大排序 
    for(int i=0;i<n;i++)
	{
		for(int j=0;j<n;j++)
		{
			if(w[i]<w[j])
			{
				int temp=w[j];
				w[j]=w[i];
				w[i]=temp;
			}
		}
	}
		
	int snum=0;
	for(int i=0;i<n;i++)
	{
		if(snum+w[i]<=c)
		{
			snum+=w[i];
			s++;
		}
		else
		{
			break;
		}
		
	}

    printf("%d",s);
    return 0;
}

最优装载问题是一个经典的贪心算法应用问题。为了证明最优装载问题具有贪心选择性质,我们可以按照以下步骤进行证明。 首先,我们假设存在一个最优解,记为(x1, x2, ..., xn),其xi表示第i个物体是否被装载。我们需要证明这个最优的第一个贪心选择是最轻的物体。 假设k是最小的满足xi=1的索引,即第k个物体是最轻的被装载的物体。根据我们的假设,最优解存在,因此1≤k≤n。 接下来,我们需要证明每一步所作的贪心选择都将问题简化为一个更小的与原问题具有相同形式的子问题。 假设我们在第k步选择了最轻的物体,并将其装载。那么剩下的问题就变成了在剩余的物体选择装载的问题。由于我们已经选择了最轻的物体,剩余的物体最优解仍然是一个最优解。 因此,我们可以得出结论,最优装载问题具有贪心选择性质。每一步所作的贪心选择都将问题简化为一个更小的与原问题具有相同形式的子问题,并且最终得到的解是最优的。 引用\[2\]给出了最优装载问题的证明过程,其详细说明了贪心选择性质的证明。 综上所述,我们可以通过证明最优装载问题最优解包含最轻的物体,并且每一步贪心选择都将问题简化为一个更小的子问题来证明最优装载问题具有贪心选择性质。 #### 引用[.reference_title] - *1* *3* [算法设计与分析——贪心算法——具有贪心性的证明——局部最优可以得到全局最优](https://blog.csdn.net/Blackoutdragon/article/details/117958067)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [最优装载问题_贪心算法](https://blog.csdn.net/fightingform/article/details/28912983)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值