Java数据结构与算法--day04

一、栈

1. 栈的介绍

在这里插入图片描述
在这里插入图片描述

(1)栈的功能测试

1️⃣ 思路
在这里插入图片描述
2️⃣ 代码

package com.atguigu.stack;

import java.awt.List;
import java.util.Scanner;

public class ArrayStackDemo {

	public static void main(String[] args) {
		//测试一下ArrayStack 是否正确
		//先创建一个ArrayStack对象->表示栈
		ArrayStack stack=new ArrayStack(4);
		String key="";
		boolean loop=true;//控制是否退出菜单
		Scanner scanner=new Scanner(System.in);
		
		while(loop) {
			System.out.println("show:表示显示栈");
			System.out.println("exit:退出程序");
			System.out.println("push:表示添加数据到栈(入栈)");
			System.out.println("pop:表示从栈取出数据(出栈)");
			System.out.println("请输入你的选择");
			key=scanner.next();
			switch (key) {
			case "show":
				stack.list();
				break;
			case "push":
				System.out.println("请输入一个数");
				int value=scanner.nextInt();
				stack.push(value);
				break;
			case "pop":
				try {
					int res=stack.pop();
					System.out.printf("出栈的数据时%d\n",res);
				}catch (Exception e) {
					// TODO: handle exception
					System.out.println(e.getMessage());
				}
				break;
			case "exit":
				scanner.close();
				loop=false;
				break;
			default:
				break;
			}
		}
		System.out.println("程序退出~~");
	}

}

//定义一个ArrayStack 表示栈
class ArrayStack{
	private int maxSize;//栈的大小
	private int[] stack;//数组,数组模拟栈,数据就放在该数组
	private int top=-1;//top表示栈顶,初始化为-1
	
	//构造器
	public ArrayStack(int maxSize) {
		this.maxSize=maxSize;
		stack=new int[this.maxSize];
	}
	
	//栈满
	public boolean isFull() {
		return top==maxSize-1;
	}
	
	//栈空
	public boolean isEmpty() {
		return top==-1;
	}
	
	//入栈-push
	public void push(int value) {
		//先判断栈是否满
		if(isFull()) {
			System.out.println("栈满");
			return;
		}
		top++;
		stack[top]=value;
	}
	//出栈-pop,将栈顶的数据返回
	public int pop() {
		//先判断栈是否空
		if(isEmpty()){
			//抛出异常
			throw new RuntimeException("栈空,没有数据~");
		}
		int value=stack[top];
		top--;
		return value;
	}
	//显示栈的情况[遍历栈],遍历时,需要从栈顶开始显示数据
	public void list() {
		if(isEmpty()){
			System.out.println("栈空,没有数据~~");
			return;
		}
		//需要从栈顶开始显示数据
		for(int i=top;i>=0;i--) {
			System.out.printf("stack[%d]=%d\n",i,stack[i]);
		}
	}
}

(2)栈实现综合计算器

1️⃣ 思路
在这里插入图片描述
2️⃣ 代码

package com.atguigu.stack;

public class Calculator {

	public static void main(String[] args) {
		//根据前面老师思路,完成表达式的运算
		String expression = "7+2*6-4"; // 15//如何处理多位数的问题?
		//创建两个栈,数栈,一个符号栈
		ArrayStack2 numStack = new ArrayStack2(10);
		ArrayStack2 operStack = new ArrayStack2(10);
		//定义需要的相关变量
		int index = 0;//用于扫描
		int num1 = 0; 
		int num2 = 0;
		int oper = 0;
		int res = 0;
		char ch = ' '; //将每次扫描得到char保存到ch
		String keepNum = ""; //用于拼接 多位数
		//开始while循环的扫描expression
		while(true) {
			//依次得到expression 的每一个字符
			ch = expression.substring(index, index+1).charAt(0);
			//判断ch是什么,然后做相应的处理
			if(operStack.isOper(ch)) {//如果是运算符
				//判断当前的符号栈是否为空
				if(!operStack.isEmpty()) {
					//如果符号栈有操作符,就进行比较,如果当前的操作符的优先级小于或者等于栈中的操作符,就需要从数栈中pop出两个数,
					//在从符号栈中pop出一个符号,进行运算,将得到结果,入数栈,然后将当前的操作符入符号栈
					if(operStack.priority(ch) <= operStack.priority(operStack.peek())) {
						num1 = numStack.pop();
						num2 = numStack.pop();
						oper = operStack.pop();
						res = numStack.cal(num1, num2, oper);
						//把运算的结果如数栈
						numStack.push(res);
						//然后将当前的操作符入符号栈
						operStack.push(ch);
					} else {
						//如果当前的操作符的优先级大于栈中的操作符, 就直接入符号栈.
						operStack.push(ch);
					}
				}else {
					//如果为空直接入符号栈..
					operStack.push(ch); // 1 + 3
				}
			} else { //如果是数,则直接入数栈
				
				//numStack.push(ch - 48); //? "1+3" '1' => 1   push出来的1是字符,要-48 ,将其转换为数字
				//分析思路
				//1. 当处理多位数时,不能发现是一个数就立即入栈,因为他可能是多位数
				//2. 在处理数,需要向expression的表达式的index 后再看一位,如果是数就进行扫描,如果是符号才入栈
				//3. 因此我们需要定义一个变量 字符串,用于拼接
				
				//处理多位数
				keepNum += ch;
				
				//如果ch已经是expression的最后一位,就直接入栈
				if (index == expression.length() - 1) {
					numStack.push(Integer.parseInt(keepNum));
				}else{
				
					//判断下一个字符是不是数字,如果是数字,就继续扫描,如果是运算符,则入栈
					//注意是看后一位,不是index++
					if (operStack.isOper(expression.substring(index+1,index+2).charAt(0))) {//substring()方法取出的是字符串,用charAt(0)方法将其转换为字符
						//如果后一位是运算符,则入栈 keepNum = "1" 或者 "123"
						numStack.push(Integer.parseInt(keepNum));
						//重要的!!!!!!, keepNum清空
						keepNum = "";
						
					}
				}
			}
			//让index + 1, 并判断是否扫描到expression最后.
			index++;
			if (index >= expression.length()) {
				break;
			}
		}
		
		//当表达式扫描完毕,就顺序的从 数栈和符号栈中pop出相应的数和符号,并运行.
		while(true) {
			//如果符号栈为空,则计算到最后的结果, 数栈中只有一个数字【结果】
			if(operStack.isEmpty()) {
				break;
			}
			num1 = numStack.pop();
			num2 = numStack.pop();
			oper = operStack.pop();
			res = numStack.cal(num1, num2, oper);
			numStack.push(res);//入栈
		}
		//将数栈的最后数,pop出,就是结果
		int res2 = numStack.pop();
		System.out.printf("表达式 %s = %d", expression, res2);
	}

}

//先创建一个栈,直接使用前面创建好
//定义一个 ArrayStack2 表示栈, 需要扩展功能
class ArrayStack2 {
	private int maxSize; // 栈的大小
	private int[] stack; // 数组,数组模拟栈,数据就放在该数组
	private int top = -1;// top表示栈顶,初始化为-1
	
	//构造器
	public ArrayStack2(int maxSize) {
		this.maxSize = maxSize;
		stack = new int[this.maxSize];
	}
	
	//增加一个方法,可以返回当前栈顶的值, 但是不是真正的pop
	public int peek() {
		return stack[top];
	}
	
	//栈满
	public boolean isFull() {
		return top == maxSize - 1;
	}
	//栈空
	public boolean isEmpty() {
		return top == -1;
	}
	//入栈-push
	public void push(int value) {
		//先判断栈是否满
		if(isFull()) {
			System.out.println("栈满");
			return;
		}
		top++;
		stack[top] = value;
	}
	//出栈-pop, 将栈顶的数据返回
	public int pop() {
		//先判断栈是否空
		if(isEmpty()) {
			//抛出异常
			throw new RuntimeException("栈空,没有数据~");
		}
		int value = stack[top];
		top--;
		return value;
	}
	//显示栈的情况[遍历栈], 遍历时,需要从栈顶开始显示数据
	public void list() {
		if(isEmpty()) {
			System.out.println("栈空,没有数据~~");
			return;
		}
		//需要从栈顶开始显示数据
		for(int i = top; i >= 0 ; i--) {
			System.out.printf("stack[%d]=%d\n", i, stack[i]);
		}
	}
	//返回运算符的优先级,优先级是程序员来确定, 优先级使用数字表示
	//数字越大,则优先级就越高.
	public int priority(int oper) {
		if(oper == '*' || oper == '/'){
			return 1;
		} else if (oper == '+' || oper == '-') {
			return 0;
		} else {
			return -1; // 假定目前的表达式只有 +, - , * , /
		}
	}
	//判断是不是一个运算符
	public boolean isOper(char val) {
		return val == '+' || val == '-' || val == '*' || val == '/';
	}
	//计算方法
	public int cal(int num1, int num2, int oper) {//oper的类型既可以是int,又可以是char,两种类型之间可以相互转换
		int res = 0; // res 用于存放计算的结果
		switch (oper) {
		case '+':
			res = num1 + num2;
			break;
		case '-':
			res = num2 - num1;// 注意顺序
			break;
		case '*':
			res = num1 * num2;
			break;
		case '/':
			res = num2 / num1;
			break;
		default:
			break;
		}
		return res;
	}
	
}

(3)前缀、中缀、后缀表达式(逆波兰表达式)

1️⃣ 前缀
在这里插入图片描述
2️⃣ 中缀表达式
在这里插入图片描述
3️⃣ 后缀表达式
在这里插入图片描述

(3)逆波兰计算器

1️⃣ 思路
在这里插入图片描述
2️⃣ 代码

package com.atguigu.stack;

import java.util.ArrayList;
import java.util.List;
import java.util.Stack;

public class PolandNotation {

	public static void main(String[] args) {
		//先定义一个逆波兰表达式
		//(3+4)x5-6  => 3 4 + 5 x 6 -
		//4*5=-8+60+8/2=>4 5 * 8 - 60 + 8 2 / +
		//测试:
		//说明:为了方便,逆波兰表达式的数字和符号使用空格隔开
//		String suffixExpression="3 4 + 5 * 6 - ";
		String suffixExpression="4 5 * 8 - 60 + 8 2 / +";//76
		//思路
		//1. 先将"3 4 + 5 x 6 - " => 放到ArrayList中
		//2.将ArrayList传递给一个方法,遍历ArrayList配合栈完成计算
		
		List<String> list=getListString(suffixExpression);
		System.out.println("rpnList="+list);
		int res=calculate(list);
		System.out.println("计算的结果是="+res);
	}
	
	//将一个逆波兰表达式,依次将数据和运算符放入到ArrayList中
	public static List<String> getListString(String suffixExpression){
		//将 suffixExpression 分割
		String[] split=suffixExpression.split(" ");
		List<String> list =new ArrayList<String>();
		for(String ele:split) {
			list.add(ele);
		}
		return list;
	}
	
	//完成对逆波兰表达式的运算
	/*
	 * 1)从左至右扫描,将3和4压入堆栈2
	 * 2)遇到+运算符,因此弹出4和3(4为栈元素,3为次顶元素),计算出3+4的值,得7,再将7入栈
	 * 3)将5入栈
	 * 4)接下来是x运算符,因此弹出5和7,计算出7x5=35,将35入栈,
	 * 5)将6入栈
	 * 6)最后是-运算符,计算出35-6的值,即29,由此得出最终结果
	 */
	
	public static int calculate(List<String> ls) {
		// 创建一个栈,只需要一个栈即可
		Stack<String> stack = new Stack<String>();
		// 遍历 ls
		for (String item : ls) {
			// 这里使用正则表达式来取出数
			if (item.matches("\\d+")) {// 匹配的是多位数
				// 入栈
				stack.push(item);
			} else {
				// pop出两个数,并运算,再入栈
				int num2 = Integer.parseInt(stack.pop());
				int num1 = Integer.parseInt(stack.pop());
				int res = 0;
				if (item.equals("+")) {
					res = num1 + num2;
				} else if (item.equals("-")) {
					res = num1 - num2;
				} else if (item.equals("*")) {
					res = num1 * num2;
				} else if (item.equals("/")) {
					res = num1 / num2;
				} else {
					throw new RuntimeException("运算符有误");
				}
				// 把res 入栈
				stack.push("" + res);
			}
		}
		//最后留在stack中的数据就是运算结果
		return Integer.parseInt(stack.pop());
	}

}

(4)中缀转后缀表达式

1️⃣ 思路
在这里插入图片描述
2️⃣ 代码

package com.atguigu.stack;

import java.util.ArrayList;
import java.util.List;
import java.util.Stack;

public class PolandNotation {

	public static void main(String[] args) {
		
		
		//完成将一个中缀表达式转成后缀表达式的功能
		//说明
		//1. 1+((2+3)*4)-5 => 转成 1 2 3 + 4 x + 5 -
		//2. 因为直接对str 进行操作,不方便,因此先将 "1+((2+3)*4)-5" => 中缀的表达式对应的List
		//	即"1+((2+3)*4)-5" => ArrayList [1,+,(,(,2,+,3,),*,4,),-,5]
		//3. 将得到的中缀表达式对应的List => 后缀表达式对应的List
		//  即 ArrayList [1,+,(,(,2,+,3,),*,4,),-,5] => ArrayList [1,2,3,+,4,*,+,5,-]
		
		String expression="1+((2+3)*4)-5";
		List<String> infixExpressionList=toInfixExpressionList(expression);
		System.out.println("中缀表达式对应的List="+infixExpressionList);//ArrayList [1,+,(,(,2,+,3,),*,4,),-,5]
		List<String> suffixExpressionList=parseSuffixExpressionList(infixExpressionList);
		System.out.println("后缀表达式对应的List="+suffixExpressionList);//ArrayList [1,2,3,+,4,*,+,5,-]
		
		System.out.printf("expression=%d",calculate(suffixExpressionList));
		
		/*
		
		//先定义一个逆波兰表达式
		//(3+4)x5-6  => 3 4 + 5 x 6 -
		//4*5=-8+60+8/2=>4 5 * 8 - 60 + 8 2 / +
		//测试:
		//说明:为了方便,逆波兰表达式的数字和符号使用空格隔开
//		String suffixExpression="3 4 + 5 * 6 - ";
		String suffixExpression="4 5 * 8 - 60 + 8 2 / +";//76
		//思路
		//1. 先将"3 4 + 5 x 6 - " => 放到ArrayList中
		//2.将ArrayList传递给一个方法,遍历ArrayList配合栈完成计算
		
		List<String> list=getListString(suffixExpression);
		System.out.println("rpnList="+list);
		int res=calculate(list);
		System.out.println("计算的结果是="+res);
		
		
		*/
	}
	
	
	//即 ArrayList [1,+,(,(,2,+,3,),*,4,),-,5] => ArrayList [1,2,3,+,4,*,+,5,-]
	//方法:将得到的中缀表达式对应的List => 后缀表达式对应的List
	public static List<String> parseSuffixExpressionList(List<String> ls){
		//定义两个栈
		Stack<String> s1=new Stack<String>();//符号栈
		//说明:因为s2这个栈,在整个转换过程中,没有pop操作,而且后面我们还需要逆序输出
		//因此比较麻烦,这里我们就不用 Stack<String> 直接使用 List<String> s2
		//Stack<String> s2=new Stack<String>();//存储中间结果的栈s2
		List<String> s2=new ArrayList<String>();//存储中间结果的 List s2
		
		//遍历ls
		for(String item:ls) {
			//如果是一个数,加入s2
			if(item.matches("\\d+")) {
				s2.add(item);
			}else if(item.equals("(")) {
				s1.push(item);
			}else if(item.equals(")")) {
				//如果是右括号")",则一次弹出s1栈顶的运算符,并压入s2,直到遇到左括号为止,此时将这一对括号丢弃
				while(!s1.peek().equals("(")) {//peek()方法是用来显示栈顶的元素,但是不会pop出来
					s2.add(s1.pop());
				}
				s1.pop();//!!! 将 ( 弹出s1栈,消除小括号
			}else {
				//当item的优先级小于等于s1栈顶运算符,将s1栈顶的运算符弹出并加入到s2中,再次转到(4.1)与s1中新的栈顶运算符相比较
				//问题:我们缺少一个比较优先级高低的方法
				while(s1.size()!=0&&Operation.getValue(s1.peek())>=Operation.getValue(item)) {
					s2.add(s1.pop());
				}
				//还需要将item压入栈
				s1.push(item);
			}
		}
		
		//将s1中剩余的运算符一次弹出并加入s2
		while(s1.size()!=0) {
			s2.add(s1.pop());
		}
		return s2;//注意因为是存放到List,因此按顺序输出就是对应的后缀表达式对应的List
	}
	
	
	
	//方法:将中缀表达式转成对应的List
	public static List<String> toInfixExpressionList(String s){
		//定义一个LList,存放中缀表达式对应的内容
		List<String> ls=new ArrayList<String>();
		int i=0;//这是一个指针,用于遍历中缀表达式字符串
		String str;//多位数的拼接
		char c;//每遍历到一个字符,就放入到c
		do {
			//如果c是一个非数字,就需要加入到ls
			if((c=s.charAt(i))<48||(c=s.charAt(i))>57) {
				ls.add(""+c);
				i++;//i需要后移
			}else {//如果是一个数,需要考虑多位数
				str="";//先将str 置成 ""   '0'[48]->'9'[57]
				while(i<s.length()&&(c=s.charAt(i))>=48&&(c=s.charAt(i))<=57) {
					str+=c;//拼接
					i++;
				}
				ls.add(str);
			}
		}while(i<s.length());
		return ls;//返回
	}
	
	//将一个逆波兰表达式,依次将数据和运算符放入到ArrayList中
	public static List<String> getListString(String suffixExpression){
		//将 suffixExpression 分割
		String[] split=suffixExpression.split(" ");
		List<String> list =new ArrayList<String>();
		for(String ele:split) {
			list.add(ele);
		}
		return list;
	}
	
	//完成对逆波兰表达式的运算
	/*
	 * 1)从左至右扫描,将3和4压入堆栈2
	 * 2)遇到+运算符,因此弹出4和3(4为栈元素,3为次顶元素),计算出3+4的值,得7,再将7入栈
	 * 3)将5入栈
	 * 4)接下来是x运算符,因此弹出5和7,计算出7x5=35,将35入栈,
	 * 5)将6入栈
	 * 6)最后是-运算符,计算出35-6的值,即29,由此得出最终结果
	 */
	
	public static int calculate(List<String> ls) {
		// 创建一个栈,只需要一个栈即可
		Stack<String> stack = new Stack<String>();
		// 遍历 ls
		for (String item : ls) {
			// 这里使用正则表达式来取出数
			if (item.matches("\\d+")) {// 匹配的是多位数
				// 入栈
				stack.push(item);
			} else {
				// pop出两个数,并运算,再入栈
				int num2 = Integer.parseInt(stack.pop());
				int num1 = Integer.parseInt(stack.pop());
				int res = 0;
				if (item.equals("+")) {
					res = num1 + num2;
				} else if (item.equals("-")) {
					res = num1 - num2;
				} else if (item.equals("*")) {
					res = num1 * num2;
				} else if (item.equals("/")) {
					res = num1 / num2;
				} else {
					throw new RuntimeException("运算符有误");
				}
				// 把res 入栈
				stack.push("" + res);
			}
		}
		//最后留在stack中的数据就是运算结果
		return Integer.parseInt(stack.pop());
	}

}

//编写一个类 Operation 可以返回一个运算符 对应的优先级
class Operation{
	private static int ADD=1;
	private static int SUB=1;
	private static int MUL=2;
	private static int DIV=2;
	
	//写一个方法,返回对应的优先级数字
	public static int getValue(String operation) {
		int result=0;
		switch (operation) {
		case "+":
			result=ADD;
			break;
		case "-":
			result=SUB;
			break;
		case "*":
			result=MUL;
			break;
		case "/":
			result=DIV;
			break;
		default:
			System.out.println("不存在该运算符");
			break;
		}
		return result;
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值