一、栈
1. 栈的介绍
(1)栈的功能测试
1️⃣ 思路
2️⃣ 代码
package com.atguigu.stack;
import java.awt.List;
import java.util.Scanner;
public class ArrayStackDemo {
public static void main(String[] args) {
//测试一下ArrayStack 是否正确
//先创建一个ArrayStack对象->表示栈
ArrayStack stack=new ArrayStack(4);
String key="";
boolean loop=true;//控制是否退出菜单
Scanner scanner=new Scanner(System.in);
while(loop) {
System.out.println("show:表示显示栈");
System.out.println("exit:退出程序");
System.out.println("push:表示添加数据到栈(入栈)");
System.out.println("pop:表示从栈取出数据(出栈)");
System.out.println("请输入你的选择");
key=scanner.next();
switch (key) {
case "show":
stack.list();
break;
case "push":
System.out.println("请输入一个数");
int value=scanner.nextInt();
stack.push(value);
break;
case "pop":
try {
int res=stack.pop();
System.out.printf("出栈的数据时%d\n",res);
}catch (Exception e) {
// TODO: handle exception
System.out.println(e.getMessage());
}
break;
case "exit":
scanner.close();
loop=false;
break;
default:
break;
}
}
System.out.println("程序退出~~");
}
}
//定义一个ArrayStack 表示栈
class ArrayStack{
private int maxSize;//栈的大小
private int[] stack;//数组,数组模拟栈,数据就放在该数组
private int top=-1;//top表示栈顶,初始化为-1
//构造器
public ArrayStack(int maxSize) {
this.maxSize=maxSize;
stack=new int[this.maxSize];
}
//栈满
public boolean isFull() {
return top==maxSize-1;
}
//栈空
public boolean isEmpty() {
return top==-1;
}
//入栈-push
public void push(int value) {
//先判断栈是否满
if(isFull()) {
System.out.println("栈满");
return;
}
top++;
stack[top]=value;
}
//出栈-pop,将栈顶的数据返回
public int pop() {
//先判断栈是否空
if(isEmpty()){
//抛出异常
throw new RuntimeException("栈空,没有数据~");
}
int value=stack[top];
top--;
return value;
}
//显示栈的情况[遍历栈],遍历时,需要从栈顶开始显示数据
public void list() {
if(isEmpty()){
System.out.println("栈空,没有数据~~");
return;
}
//需要从栈顶开始显示数据
for(int i=top;i>=0;i--) {
System.out.printf("stack[%d]=%d\n",i,stack[i]);
}
}
}
(2)栈实现综合计算器
1️⃣ 思路
2️⃣ 代码
package com.atguigu.stack;
public class Calculator {
public static void main(String[] args) {
//根据前面老师思路,完成表达式的运算
String expression = "7+2*6-4"; // 15//如何处理多位数的问题?
//创建两个栈,数栈,一个符号栈
ArrayStack2 numStack = new ArrayStack2(10);
ArrayStack2 operStack = new ArrayStack2(10);
//定义需要的相关变量
int index = 0;//用于扫描
int num1 = 0;
int num2 = 0;
int oper = 0;
int res = 0;
char ch = ' '; //将每次扫描得到char保存到ch
String keepNum = ""; //用于拼接 多位数
//开始while循环的扫描expression
while(true) {
//依次得到expression 的每一个字符
ch = expression.substring(index, index+1).charAt(0);
//判断ch是什么,然后做相应的处理
if(operStack.isOper(ch)) {//如果是运算符
//判断当前的符号栈是否为空
if(!operStack.isEmpty()) {
//如果符号栈有操作符,就进行比较,如果当前的操作符的优先级小于或者等于栈中的操作符,就需要从数栈中pop出两个数,
//在从符号栈中pop出一个符号,进行运算,将得到结果,入数栈,然后将当前的操作符入符号栈
if(operStack.priority(ch) <= operStack.priority(operStack.peek())) {
num1 = numStack.pop();
num2 = numStack.pop();
oper = operStack.pop();
res = numStack.cal(num1, num2, oper);
//把运算的结果如数栈
numStack.push(res);
//然后将当前的操作符入符号栈
operStack.push(ch);
} else {
//如果当前的操作符的优先级大于栈中的操作符, 就直接入符号栈.
operStack.push(ch);
}
}else {
//如果为空直接入符号栈..
operStack.push(ch); // 1 + 3
}
} else { //如果是数,则直接入数栈
//numStack.push(ch - 48); //? "1+3" '1' => 1 push出来的1是字符,要-48 ,将其转换为数字
//分析思路
//1. 当处理多位数时,不能发现是一个数就立即入栈,因为他可能是多位数
//2. 在处理数,需要向expression的表达式的index 后再看一位,如果是数就进行扫描,如果是符号才入栈
//3. 因此我们需要定义一个变量 字符串,用于拼接
//处理多位数
keepNum += ch;
//如果ch已经是expression的最后一位,就直接入栈
if (index == expression.length() - 1) {
numStack.push(Integer.parseInt(keepNum));
}else{
//判断下一个字符是不是数字,如果是数字,就继续扫描,如果是运算符,则入栈
//注意是看后一位,不是index++
if (operStack.isOper(expression.substring(index+1,index+2).charAt(0))) {//substring()方法取出的是字符串,用charAt(0)方法将其转换为字符
//如果后一位是运算符,则入栈 keepNum = "1" 或者 "123"
numStack.push(Integer.parseInt(keepNum));
//重要的!!!!!!, keepNum清空
keepNum = "";
}
}
}
//让index + 1, 并判断是否扫描到expression最后.
index++;
if (index >= expression.length()) {
break;
}
}
//当表达式扫描完毕,就顺序的从 数栈和符号栈中pop出相应的数和符号,并运行.
while(true) {
//如果符号栈为空,则计算到最后的结果, 数栈中只有一个数字【结果】
if(operStack.isEmpty()) {
break;
}
num1 = numStack.pop();
num2 = numStack.pop();
oper = operStack.pop();
res = numStack.cal(num1, num2, oper);
numStack.push(res);//入栈
}
//将数栈的最后数,pop出,就是结果
int res2 = numStack.pop();
System.out.printf("表达式 %s = %d", expression, res2);
}
}
//先创建一个栈,直接使用前面创建好
//定义一个 ArrayStack2 表示栈, 需要扩展功能
class ArrayStack2 {
private int maxSize; // 栈的大小
private int[] stack; // 数组,数组模拟栈,数据就放在该数组
private int top = -1;// top表示栈顶,初始化为-1
//构造器
public ArrayStack2(int maxSize) {
this.maxSize = maxSize;
stack = new int[this.maxSize];
}
//增加一个方法,可以返回当前栈顶的值, 但是不是真正的pop
public int peek() {
return stack[top];
}
//栈满
public boolean isFull() {
return top == maxSize - 1;
}
//栈空
public boolean isEmpty() {
return top == -1;
}
//入栈-push
public void push(int value) {
//先判断栈是否满
if(isFull()) {
System.out.println("栈满");
return;
}
top++;
stack[top] = value;
}
//出栈-pop, 将栈顶的数据返回
public int pop() {
//先判断栈是否空
if(isEmpty()) {
//抛出异常
throw new RuntimeException("栈空,没有数据~");
}
int value = stack[top];
top--;
return value;
}
//显示栈的情况[遍历栈], 遍历时,需要从栈顶开始显示数据
public void list() {
if(isEmpty()) {
System.out.println("栈空,没有数据~~");
return;
}
//需要从栈顶开始显示数据
for(int i = top; i >= 0 ; i--) {
System.out.printf("stack[%d]=%d\n", i, stack[i]);
}
}
//返回运算符的优先级,优先级是程序员来确定, 优先级使用数字表示
//数字越大,则优先级就越高.
public int priority(int oper) {
if(oper == '*' || oper == '/'){
return 1;
} else if (oper == '+' || oper == '-') {
return 0;
} else {
return -1; // 假定目前的表达式只有 +, - , * , /
}
}
//判断是不是一个运算符
public boolean isOper(char val) {
return val == '+' || val == '-' || val == '*' || val == '/';
}
//计算方法
public int cal(int num1, int num2, int oper) {//oper的类型既可以是int,又可以是char,两种类型之间可以相互转换
int res = 0; // res 用于存放计算的结果
switch (oper) {
case '+':
res = num1 + num2;
break;
case '-':
res = num2 - num1;// 注意顺序
break;
case '*':
res = num1 * num2;
break;
case '/':
res = num2 / num1;
break;
default:
break;
}
return res;
}
}
(3)前缀、中缀、后缀表达式(逆波兰表达式)
1️⃣ 前缀
2️⃣ 中缀表达式
3️⃣ 后缀表达式
(3)逆波兰计算器
1️⃣ 思路
2️⃣ 代码
package com.atguigu.stack;
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class PolandNotation {
public static void main(String[] args) {
//先定义一个逆波兰表达式
//(3+4)x5-6 => 3 4 + 5 x 6 -
//4*5=-8+60+8/2=>4 5 * 8 - 60 + 8 2 / +
//测试:
//说明:为了方便,逆波兰表达式的数字和符号使用空格隔开
// String suffixExpression="3 4 + 5 * 6 - ";
String suffixExpression="4 5 * 8 - 60 + 8 2 / +";//76
//思路
//1. 先将"3 4 + 5 x 6 - " => 放到ArrayList中
//2.将ArrayList传递给一个方法,遍历ArrayList配合栈完成计算
List<String> list=getListString(suffixExpression);
System.out.println("rpnList="+list);
int res=calculate(list);
System.out.println("计算的结果是="+res);
}
//将一个逆波兰表达式,依次将数据和运算符放入到ArrayList中
public static List<String> getListString(String suffixExpression){
//将 suffixExpression 分割
String[] split=suffixExpression.split(" ");
List<String> list =new ArrayList<String>();
for(String ele:split) {
list.add(ele);
}
return list;
}
//完成对逆波兰表达式的运算
/*
* 1)从左至右扫描,将3和4压入堆栈2
* 2)遇到+运算符,因此弹出4和3(4为栈元素,3为次顶元素),计算出3+4的值,得7,再将7入栈
* 3)将5入栈
* 4)接下来是x运算符,因此弹出5和7,计算出7x5=35,将35入栈,
* 5)将6入栈
* 6)最后是-运算符,计算出35-6的值,即29,由此得出最终结果
*/
public static int calculate(List<String> ls) {
// 创建一个栈,只需要一个栈即可
Stack<String> stack = new Stack<String>();
// 遍历 ls
for (String item : ls) {
// 这里使用正则表达式来取出数
if (item.matches("\\d+")) {// 匹配的是多位数
// 入栈
stack.push(item);
} else {
// pop出两个数,并运算,再入栈
int num2 = Integer.parseInt(stack.pop());
int num1 = Integer.parseInt(stack.pop());
int res = 0;
if (item.equals("+")) {
res = num1 + num2;
} else if (item.equals("-")) {
res = num1 - num2;
} else if (item.equals("*")) {
res = num1 * num2;
} else if (item.equals("/")) {
res = num1 / num2;
} else {
throw new RuntimeException("运算符有误");
}
// 把res 入栈
stack.push("" + res);
}
}
//最后留在stack中的数据就是运算结果
return Integer.parseInt(stack.pop());
}
}
(4)中缀转后缀表达式
1️⃣ 思路
2️⃣ 代码
package com.atguigu.stack;
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class PolandNotation {
public static void main(String[] args) {
//完成将一个中缀表达式转成后缀表达式的功能
//说明
//1. 1+((2+3)*4)-5 => 转成 1 2 3 + 4 x + 5 -
//2. 因为直接对str 进行操作,不方便,因此先将 "1+((2+3)*4)-5" => 中缀的表达式对应的List
// 即"1+((2+3)*4)-5" => ArrayList [1,+,(,(,2,+,3,),*,4,),-,5]
//3. 将得到的中缀表达式对应的List => 后缀表达式对应的List
// 即 ArrayList [1,+,(,(,2,+,3,),*,4,),-,5] => ArrayList [1,2,3,+,4,*,+,5,-]
String expression="1+((2+3)*4)-5";
List<String> infixExpressionList=toInfixExpressionList(expression);
System.out.println("中缀表达式对应的List="+infixExpressionList);//ArrayList [1,+,(,(,2,+,3,),*,4,),-,5]
List<String> suffixExpressionList=parseSuffixExpressionList(infixExpressionList);
System.out.println("后缀表达式对应的List="+suffixExpressionList);//ArrayList [1,2,3,+,4,*,+,5,-]
System.out.printf("expression=%d",calculate(suffixExpressionList));
/*
//先定义一个逆波兰表达式
//(3+4)x5-6 => 3 4 + 5 x 6 -
//4*5=-8+60+8/2=>4 5 * 8 - 60 + 8 2 / +
//测试:
//说明:为了方便,逆波兰表达式的数字和符号使用空格隔开
// String suffixExpression="3 4 + 5 * 6 - ";
String suffixExpression="4 5 * 8 - 60 + 8 2 / +";//76
//思路
//1. 先将"3 4 + 5 x 6 - " => 放到ArrayList中
//2.将ArrayList传递给一个方法,遍历ArrayList配合栈完成计算
List<String> list=getListString(suffixExpression);
System.out.println("rpnList="+list);
int res=calculate(list);
System.out.println("计算的结果是="+res);
*/
}
//即 ArrayList [1,+,(,(,2,+,3,),*,4,),-,5] => ArrayList [1,2,3,+,4,*,+,5,-]
//方法:将得到的中缀表达式对应的List => 后缀表达式对应的List
public static List<String> parseSuffixExpressionList(List<String> ls){
//定义两个栈
Stack<String> s1=new Stack<String>();//符号栈
//说明:因为s2这个栈,在整个转换过程中,没有pop操作,而且后面我们还需要逆序输出
//因此比较麻烦,这里我们就不用 Stack<String> 直接使用 List<String> s2
//Stack<String> s2=new Stack<String>();//存储中间结果的栈s2
List<String> s2=new ArrayList<String>();//存储中间结果的 List s2
//遍历ls
for(String item:ls) {
//如果是一个数,加入s2
if(item.matches("\\d+")) {
s2.add(item);
}else if(item.equals("(")) {
s1.push(item);
}else if(item.equals(")")) {
//如果是右括号")",则一次弹出s1栈顶的运算符,并压入s2,直到遇到左括号为止,此时将这一对括号丢弃
while(!s1.peek().equals("(")) {//peek()方法是用来显示栈顶的元素,但是不会pop出来
s2.add(s1.pop());
}
s1.pop();//!!! 将 ( 弹出s1栈,消除小括号
}else {
//当item的优先级小于等于s1栈顶运算符,将s1栈顶的运算符弹出并加入到s2中,再次转到(4.1)与s1中新的栈顶运算符相比较
//问题:我们缺少一个比较优先级高低的方法
while(s1.size()!=0&&Operation.getValue(s1.peek())>=Operation.getValue(item)) {
s2.add(s1.pop());
}
//还需要将item压入栈
s1.push(item);
}
}
//将s1中剩余的运算符一次弹出并加入s2
while(s1.size()!=0) {
s2.add(s1.pop());
}
return s2;//注意因为是存放到List,因此按顺序输出就是对应的后缀表达式对应的List
}
//方法:将中缀表达式转成对应的List
public static List<String> toInfixExpressionList(String s){
//定义一个LList,存放中缀表达式对应的内容
List<String> ls=new ArrayList<String>();
int i=0;//这是一个指针,用于遍历中缀表达式字符串
String str;//多位数的拼接
char c;//每遍历到一个字符,就放入到c
do {
//如果c是一个非数字,就需要加入到ls
if((c=s.charAt(i))<48||(c=s.charAt(i))>57) {
ls.add(""+c);
i++;//i需要后移
}else {//如果是一个数,需要考虑多位数
str="";//先将str 置成 "" '0'[48]->'9'[57]
while(i<s.length()&&(c=s.charAt(i))>=48&&(c=s.charAt(i))<=57) {
str+=c;//拼接
i++;
}
ls.add(str);
}
}while(i<s.length());
return ls;//返回
}
//将一个逆波兰表达式,依次将数据和运算符放入到ArrayList中
public static List<String> getListString(String suffixExpression){
//将 suffixExpression 分割
String[] split=suffixExpression.split(" ");
List<String> list =new ArrayList<String>();
for(String ele:split) {
list.add(ele);
}
return list;
}
//完成对逆波兰表达式的运算
/*
* 1)从左至右扫描,将3和4压入堆栈2
* 2)遇到+运算符,因此弹出4和3(4为栈元素,3为次顶元素),计算出3+4的值,得7,再将7入栈
* 3)将5入栈
* 4)接下来是x运算符,因此弹出5和7,计算出7x5=35,将35入栈,
* 5)将6入栈
* 6)最后是-运算符,计算出35-6的值,即29,由此得出最终结果
*/
public static int calculate(List<String> ls) {
// 创建一个栈,只需要一个栈即可
Stack<String> stack = new Stack<String>();
// 遍历 ls
for (String item : ls) {
// 这里使用正则表达式来取出数
if (item.matches("\\d+")) {// 匹配的是多位数
// 入栈
stack.push(item);
} else {
// pop出两个数,并运算,再入栈
int num2 = Integer.parseInt(stack.pop());
int num1 = Integer.parseInt(stack.pop());
int res = 0;
if (item.equals("+")) {
res = num1 + num2;
} else if (item.equals("-")) {
res = num1 - num2;
} else if (item.equals("*")) {
res = num1 * num2;
} else if (item.equals("/")) {
res = num1 / num2;
} else {
throw new RuntimeException("运算符有误");
}
// 把res 入栈
stack.push("" + res);
}
}
//最后留在stack中的数据就是运算结果
return Integer.parseInt(stack.pop());
}
}
//编写一个类 Operation 可以返回一个运算符 对应的优先级
class Operation{
private static int ADD=1;
private static int SUB=1;
private static int MUL=2;
private static int DIV=2;
//写一个方法,返回对应的优先级数字
public static int getValue(String operation) {
int result=0;
switch (operation) {
case "+":
result=ADD;
break;
case "-":
result=SUB;
break;
case "*":
result=MUL;
break;
case "/":
result=DIV;
break;
default:
System.out.println("不存在该运算符");
break;
}
return result;
}
}