动态规划dp(c++)举例详解

本文介绍了动态规划的核心概念,包括dp转移方程、数据结构和优化策略。通过斐波那契数列、01背包问题、最长公共子序列及最长递增子序列等示例,阐述了dp的解决思路和状态转移方程。同时强调了动态规划的子问题重叠性和最优子结构特性,以及与递归的关系。
摘要由CSDN通过智能技术生成

一.dp

1.1核心:dp转移方程

1.2数据结构:int dp[][]

1.3步骤:

dp数组初始化、dp转移方程、dp[n-1][n-1]

1.4优化

空间优化(二维->一维)

1.5 example

①斐波那契数列

递归解法:

int fib(int n){

if(n==1 || n==2) return 1;

return (fib(n-1)+fib(n-2));

}

dp解法:

int fib(int n){

int dp[100];

dp[0]=1;

dp[1]=1;

for(int i=2;i<=n;i++)

dp[i]=dp[i-1]+dp[i-2];

return dp[n];

}

②01背包

0.dp[i][j]:当前可以选择的背包有i个,有j元钱,可以得到的最大化效益是多少

1.初始化 dp[0][i]=j>c[0]?w[0]:0;   

2.状态转移方程:

if(j>=c[i]) dp[i][j]=max(dp[i-1][j],dp[i-1][j-c[i]]+w[i]);

else dp[i][j]=dp[i-1][j];

3.ans:ans=dp[n-1][n-1]

4.优化:一维数组,i:n->c[i]

③最长公共子序列

1.dp[i][j]:Xi和Yj的最长公共子序列

2.状态转换方程:if(xi==yi) dp[i][j]=dp[i-1][j-1]+1; else dp[i][j]=max(dp[i-1][j],dp[i][j-1]);

3.ans:dp[n-1][m-1]

④最长递增子序列

1.dp[i]:以数组下标为i的值为子序列最后一个元素的序列中,最长自增子序列的长度

2.状态转换方程:dp[i]=-1; for j in (0,i) if(num[i]>num[j]) dp[i]=max{dp[i],dp[j]}; dp[i]++;

1.6特性

子问题的重叠性、求解的是最优子结构、可以与递归相互转化,但是递归效率低、

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

rebegin_2023

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值