Spark调优问题以及个人建议

程序调优;

⾸先,尽量减少shuffle次数;

//两次shuffle rdd.map().repartition(1000).reduceByKey(_+_,3000)

//⼀次shuffle Rdd.map().repartition(3000).reduceByKey(_+_)

然后必要时主动shuffle,通常⽤于改变并⾏度,提⾼后续分布式运⾏速度; rdd.repartition(largerNumPartition).map() 最后,使⽤treeReduce&treeAggregate替换reduce&aggregate。数据量较⼤时,reduce&aggregate⼀磁性聚 合,shuffle量太⼤,⽽treeReduce&treeAggregate是分批聚合,更为保险。

参数调优;

spark.shuffle.file.buffer:map task到buffer到磁盘

默认值:32K

参数说明:该参数⽤于设置shuffle write task的BufferedOutputStream的buffer缓冲⼤⼩。将数据写到磁盘⽂件之前, 会先写⼊buffer缓冲中,待缓冲写满之后,才会溢写到磁盘;

调优建议:如果作业可⽤的内存资源较为充⾜的话,可以适当增加这个参数的⼤⼩(⽐如64k),从⽽减少shuffle write过程中溢写磁盘⽂件的次数,也就可以减少磁盘IO次数,进⽽提升性能。在实践中发现,合理调节该参数, 性能会有1到5%的提升。 spark.reducer.maxSizeFlight:reduce task去磁盘拉取数据 默认值:48m

还有就是个人建议:

如果的确不需要sortHashShuffle的排序机制,那么除了使⽤bypass机制,还可以尝试 将spark.shuffle.manager参数⼿动调节为hash,使⽤hashShuffleManager,同时开启consolidate机制。在实践中尝试 过,发现其性能⽐开启了bypass机制的sortshuffleManager要⾼出10%到30%。

spark3.0版本之后就是Spark SQL和Spark Cores是其中的核心模块开启动态分区裁剪了,免去了很多SQL和RDD算子这一块的优化了,如果是项目架构老一点或者是银行之类的项目可能没有更新到spark3.0之后的版本

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值