程序调优;
⾸先,尽量减少shuffle次数;
//两次shuffle rdd.map().repartition(1000).reduceByKey(_+_,3000)
//⼀次shuffle Rdd.map().repartition(3000).reduceByKey(_+_)
然后必要时主动shuffle,通常⽤于改变并⾏度,提⾼后续分布式运⾏速度; rdd.repartition(largerNumPartition).map() 最后,使⽤treeReduce&treeAggregate替换reduce&aggregate。数据量较⼤时,reduce&aggregate⼀磁性聚 合,shuffle量太⼤,⽽treeReduce&treeAggregate是分批聚合,更为保险。
参数调优;
spark.shuffle.file.buffer:map task到buffer到磁盘
默认值:32K
参数说明:该参数⽤于设置shuffle write task的BufferedOutputStream的buffer缓冲⼤⼩。将数据写到磁盘⽂件之前, 会先写⼊buffer缓冲中,待缓冲写满之后,才会溢写到磁盘;
调优建议:如果作业可⽤的内存资源较为充⾜的话,可以适当增加这个参数的⼤⼩(⽐如64k),从⽽减少shuffle write过程中溢写磁盘⽂件的次数,也就可以减少磁盘IO次数,进⽽提升性能。在实践中发现,合理调节该参数, 性能会有1到5%的提升。 spark.reducer.maxSizeFlight:reduce task去磁盘拉取数据 默认值:48m
还有就是个人建议:
如果的确不需要sortHashShuffle的排序机制,那么除了使⽤bypass机制,还可以尝试 将spark.shuffle.manager参数⼿动调节为hash,使⽤hashShuffleManager,同时开启consolidate机制。在实践中尝试 过,发现其性能⽐开启了bypass机制的sortshuffleManager要⾼出10%到30%。
spark3.0版本之后就是Spark SQL和Spark Cores是其中的核心模块开启动态分区裁剪了,免去了很多SQL和RDD算子这一块的优化了,如果是项目架构老一点或者是银行之类的项目可能没有更新到spark3.0之后的版本