二维背包(动态规划)

dp[i][j] 表示当背包体积为 i,重量为 j 时能获得的最大总价值。对于每个物品 i,从背包容量和重量的最大值开始,倒序循环更新 dp 数组。更新公式为:dp[j][k] = max(dp[j][k], dp[j-v[i]][k-w[i]] + p[i]),即在放入当前物品和不放入当前物品两种情况中选择价值最大的方案。

代码如下:

#include <bits/stdc++.h>
using namespace std;

int main() {
    int T;
    cin >> T;
    while (T--) {
        int n, C, L;
        cin >> n >> C >> L;

        // 分别存储每个物品的体积、重量和价值
        vector<int> v(n), w(n), p(n);
        for (int i = 0; i < n; i++) {
            cin >> v[i] >> w[i] >> p[i];
        }

        // 定义二维数组 dp,表示当背包体积为 i,重量为 j 时能获得的最大总价值
        vector<vector<int>> dp(C+1, vector<int>(L+1, 0));

        // 遍历每个物品,倒序更新 dp 数组
        for (int i = 0; i < n; i++) {
            // 从背包容量和重量的最大值开始循环,倒序更新 dp 数组
            for (int j = C; j >= v[i]; j--) {
                for (int k = L; k >= w[i]; k--) {
                    // 更新公式为:dp[j][k] = max(dp[j][k], dp[j-v[i]][k-w[i]] + p[i])
                    // 即在放入当前物品和不放入当前物品两种情况中选择价值最大的方案
                    dp[j][k] = max(dp[j][k], dp[j-v[i]][k-w[i]] + p[i]);
                }
            }
        }

        // 输出 dp[C][L],即当背包容量为 C,重量为 L 时能获得的最大总价值
        cout << dp[C][L] << endl;
    }
    return 0;
}

图解:

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值