流式处理数据库是什么?

流式处理数据库是处理实时流数据的数据库,与传统数据库不同,它在数据生成后立即处理,适用于实时分析、欺诈检测、网络监控等应用场景。流数据库的发展包括从学术研究到大型企业的采用,再到云服务的出现。典型用例包括IoT、广告推荐和机器学习,它们与传统数据库的主要区别在于处理和查询的实时性。流式数据库通过低延迟提供结果,支持实时机器学习中的特征工程,为现代数据系统提供了关键组件。
摘要由CSDN通过智能技术生成

流式处理数据库是什么?

流式处理数据库是一种专门设计用于处理大量实时流数据的数据库。与传统数据库不同,流数据库在生成数据后立即对其进行处理,从而实现实时洞察和分析。流数据库可以存储数据并响应用户数据访问请求,适用于实时分析、欺诈检测、网络监控和物联网(IoT)等延迟关键型应用程序。流数据库可以简化技术堆栈。

简史

流数据库的概念于2002年首次在学术界引入。一组研究人员建立了第一个流数据库Aurora,用于管理数据库内部数据流。几年后,大型企业采用了这项技术。数据库供应商Oracle、IBM和Microsoft推出了他们的流处理解决方案,称为Oracle CQL,IBM System S和Microsoft SQLServer StreamInsight。这些供应商将流处理功能集成到其现有数据库中。

自2000年代后期以来,受MapReduce启发的开发人员将流处理功能与数据库系统分离,并开发了大规模的流处理引擎,包括Apache Storm、Apache Samza、Apache Flink和Apache Spark Streaming。这些系统旨在持续处理摄取的数据流,并将结果交付给下游系统。但是,与流式数据库相比,流处理引擎不存储数据,因此无法为用户启动的即席查询提供服务。

流数据库与流处理引擎并行发展。两个流数据库PipelineDB和KsqlDB是在2010年代开发的。在2020年代初期,出现了一些基于云的流媒体数据库,如RisingWave、Materialize和DeltaStream。这些产品旨在为用户提供云中的流式数据库服务,并设计了充分利用云资源的架构。

典型用例

流式数据库非常适合需要最新结果的实时应用程序,新鲜度要求从亚秒到几分钟不等。IoT和网络监控等应用程序需要亚秒级延迟,广告推荐、库存仪表板和食品配送等应用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值