《剑指offer》 -day9- 动态规划(中等)

剑指 Offer 42. 连续子数组的最大和

题目描述

输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。
要求时间复杂度为 O ( n ) O(n) O(n)

提示:

  • 1 < = a r r . l e n g t h < = 1 0 5 1 <= arr.length <= 10^5 1<=arr.length<=105
  • 100 < = a r r [ i ] < = 100 100 <= arr[i] <= 100 100<=arr[i]<=100

贪心 ⭐️

思路:

  • 由于本题目只考虑 连续数组 的最大和,所以可以设置一个总和 s u m sum sum,记录目前为止的 连续数组的最大和
  • 如果当前子数组的总和已经小于0,那么不会再有“正向”贡献,需要重置 s u m = 0 ; sum = 0; sum=0;
class Solution {
    public int maxSubArray(int[] nums) {
        int sum = 0;
        int n = nums.length;
        int res = Integer.MIN_VALUE;
        for (int i = 0; i < n; i++) {
            sum += nums[i];
            res = Math.max(sum, res);
            if (sum < 0) { // 如果当前子数组的总和已经小于0,那么不会再有“正向”贡献,需要重置
                sum = 0;
            }
        }
        return res;
    }
}
  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( 1 ) O(1) O(1)
    贪心

这里太假了,leetcode这个 时间、内存消耗果然不准。 O ( 1 ) O(1) O(1)的空间竟然比 O ( n ) O(n) O(n)的空间 还大…

DP

DP:写法1 ⭐️

思路:

  1. d p [ i ] dp[i] dp[i] 表示以 i 结尾的连续子数组的和的最大值
    int[] dp = new int[n];
  2. 递推公式
    • 上一个(第 i-1)结尾的数组和大于0,加到当前元素才会有 贡献:即, d p [ i ] = d p [ i − 1 ] + n u m s [ i ] ; dp[i] = dp[i - 1] + nums[i]; dp[i]=dp[i1]+nums[i];
    • 不用考虑当前元素 nums[i],重置 dp[i]。即, d p [ i ] = n u m s [ i ] ; dp[i] = nums[i]; dp[i]=nums[i];
  3. 初始化: d p [ 0 ] = n u m s [ 0 ] ; dp[0] = nums[0]; dp[0]=nums[0];

    注意:不能初始化 d p [ 0 ] = I n t e g e r . M I N V A L U E ; dp[0] = Integer.MIN_VALUE; dp[0]=Integer.MINVALUE;

class Solution {
    public int maxSubArray(int[] nums) {
        int n = nums.length;
        int res = nums[0];
        int[] dp = new int[n]; // dp[i]表示以i结尾的连续子数组的和的最大值
        // 3、初始化
        dp[0] = nums[0];
        // 4、遍历顺序
        for (int i = 1; i < n; i++) {
            // 2、递推公式
            if (dp[i - 1] > 0) { // 上一个(第i-1)结尾的数组和大于0,加到当前元素才会有 贡献
                dp[i] = dp[i - 1] + nums[i];
            } else { // 不用考虑当前元素 nums[i],重置dp[i]
                dp[i] = nums[i];
            }
            res = Math.max(res, dp[i]); // 取dp[i]最大值
        }
        // 5、打印dp
        // System.out.println("nums: " + Arrays.toString(nums));
        // System.out.println("  dp: " + Arrays.toString(dp));;
        return res;
    }
}

DP:写法2

以上 dp写法1中,将 d p [ i ] dp[i] dp[i] 表示以 i 结尾的连续子数组的和的最大值,需要单独处理 d p [ 0 ] dp[0] dp[0],较为复杂。

这里可以通过将 定义为 dp[n+1] 可以避免单独初始化 dp[0]

class Solution {
    public int maxSubArray(int[] nums) {
        int n = nums.length;
        int res = nums[0];
        // 定义为 dp[n+1] 可以避免单独初始化 dp[0]
        int[] dp = new int[n + 1]; // dp[i]表示以i-1结尾的连续子数组的和的最大值
        // 3、初始化(定义dp[n+1]不必单独初始化dp[0])
        
        // 4、遍历顺序
        for (int i = 1; i <= n; i++) {
            // 2、递推公式
            dp[i] = Math.max(dp[i - 1] + nums[i - 1], nums[i - 1]); // 上面写法的合并
            res = Math.max(res, dp[i]); // 取dp[i]最大值
        }
        // 5、打印dp
        // System.out.println("nums: " + Arrays.toString(nums));
        // System.out.println("  dp: " + Arrays.toString(dp));;
        return res;
    }
}
  • 时间复杂度: O ( n ) O(n) O(n)
  • 空间复杂度: O ( n ) O(n) O(n)
    dp

剑指 Offer 47. 礼物的最大价值

题目描述

在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?

提示:

  • 0 < g r i d . l e n g t h < = 200 0 < grid.length <= 200 0<grid.length<=200
  • 0 < g r i d [ 0 ] . l e n g t h < = 200 0 < grid[0].length <= 200 0<grid[0].length<=200

DP

DP:写法1

思路:

  1. d p [ i ] [ j ] dp[i][j] dp[i][j] 表示从(0, 0)到(i, j)可以拿到的礼物的最大价值
    int[][] dp = new int[m][n];
  2. 递推公式
    当前位置 (i, j) 只能从其上方 或 左方而来(第一行、第一列单独考虑),所以取上 2 个位置的最大值。
    dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
  3. 初始化

    这样设 d p [ m ] [ n ] dp[m][n] dp[m][n] 需要单独处理 d p [ i ] [ 0 ] dp[i][0] dp[i][0] d p [ 0 ] [ j ] dp[0][j] dp[0][j],二者均为 左 (或 上)方 元素之和

class Solution {
    public int maxValue(int[][] grid) {
        int m = grid.length;
        int n = grid[0].length;
        int[][] dp = new int[m][n]; // dp[i][j]表示从(0, 0)到(i, j)可以拿到的礼物的最大价值
        // 3、初始化
        dp[0][0] = grid[0][0];
        for (int i = 1; i < m; i++) {
            dp[i][0] = dp[i - 1][0] + grid[i][0];  
        }
        for (int j = 1; j < n; j++) {
            dp[0][j] = dp[0][j - 1] + grid[0][j];  
        }
        // 4、遍历顺序(从上到下,从左到右)
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                // 2、递推公式
                dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
            }
        }
        // 5、打印dp
        for (int i = 0; i < m; i++) {
            System.out.println(Arrays.toString(dp[i]));
        }
        return dp[m - 1][n - 1];
    }
}
  • 时间复杂度: O ( n 2 ) O(n^2) O(n2)
  • 空间复杂度: O ( n 2 ) O(n^2) O(n2)

DP:写法2(统一写法) ⭐️

d p [ i ] [ j ] dp[i][j] dp[i][j] 表示从(0, 0)到 (i-1, j-1) 可以拿到的礼物的最大价值,可以避免单独处理 d p [ i ] [ 0 ] dp[i][0] dp[i][0] d p [ 0 ] [ j ] dp[0][j] dp[0][j],二者均为 左 (或 上)方 元素之和

即,int[][] dp = new int[m + 1][n + 1];

class Solution {
    public int maxValue(int[][] grid) {
        int m = grid.length;
        int n = grid[0].length;
        int[][] dp = new int[m + 1][n + 1]; // dp[i][j]表示从(0, 0)到(i-1, j-1)可以拿到的礼物的最大价值
        // 3、初始化(定义dp[m+1][n+1]可以避免单独处理dp[i][0]、dp[0][j])
        
        // 4、遍历顺序(从上到下,从左到右)
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                // 2、递推公式
                dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]) + grid[i - 1][j - 1];
            }
        }
        // 5、打印dp
        for (int i = 0; i <= m; i++) {
            System.out.println(Arrays.toString(dp[i]));
        }
        return dp[m][n];
    }
}

dp

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值