剑指 Offer 42. 连续子数组的最大和
题目描述
输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。
要求时间复杂度为 O ( n ) O(n) O(n)。
提示:
- 1 < = a r r . l e n g t h < = 1 0 5 1 <= arr.length <= 10^5 1<=arr.length<=105
- 100 < = a r r [ i ] < = 100 100 <= arr[i] <= 100 100<=arr[i]<=100
贪心 ⭐️
思路:
- 由于本题目只考虑 连续数组 的最大和,所以可以设置一个总和 s u m sum sum,记录目前为止的 连续数组的最大和
- 如果当前子数组的总和已经小于0,那么不会再有“正向”贡献,需要重置 s u m = 0 ; sum = 0; sum=0;
class Solution {
public int maxSubArray(int[] nums) {
int sum = 0;
int n = nums.length;
int res = Integer.MIN_VALUE;
for (int i = 0; i < n; i++) {
sum += nums[i];
res = Math.max(sum, res);
if (sum < 0) { // 如果当前子数组的总和已经小于0,那么不会再有“正向”贡献,需要重置
sum = 0;
}
}
return res;
}
}
- 时间复杂度: O ( n ) O(n) O(n)
- 空间复杂度:
O
(
1
)
O(1)
O(1)
这里太假了,leetcode这个 时间、内存消耗果然不准。 O ( 1 ) O(1) O(1)的空间竟然比 O ( n ) O(n) O(n)的空间 还大…
DP
DP:写法1 ⭐️
思路:
-
d
p
[
i
]
dp[i]
dp[i] 表示以 i 结尾的连续子数组的和的最大值
int[] dp = new int[n];
- 递推公式
- 上一个(第 i-1)结尾的数组和大于0,加到当前元素才会有 贡献:即, d p [ i ] = d p [ i − 1 ] + n u m s [ i ] ; dp[i] = dp[i - 1] + nums[i]; dp[i]=dp[i−1]+nums[i];
- 不用考虑当前元素 nums[i],重置 dp[i]。即, d p [ i ] = n u m s [ i ] ; dp[i] = nums[i]; dp[i]=nums[i];
- 初始化:
d
p
[
0
]
=
n
u
m
s
[
0
]
;
dp[0] = nums[0];
dp[0]=nums[0];
注意:不能初始化 d p [ 0 ] = I n t e g e r . M I N V A L U E ; dp[0] = Integer.MIN_VALUE; dp[0]=Integer.MINVALUE;
class Solution {
public int maxSubArray(int[] nums) {
int n = nums.length;
int res = nums[0];
int[] dp = new int[n]; // dp[i]表示以i结尾的连续子数组的和的最大值
// 3、初始化
dp[0] = nums[0];
// 4、遍历顺序
for (int i = 1; i < n; i++) {
// 2、递推公式
if (dp[i - 1] > 0) { // 上一个(第i-1)结尾的数组和大于0,加到当前元素才会有 贡献
dp[i] = dp[i - 1] + nums[i];
} else { // 不用考虑当前元素 nums[i],重置dp[i]
dp[i] = nums[i];
}
res = Math.max(res, dp[i]); // 取dp[i]最大值
}
// 5、打印dp
// System.out.println("nums: " + Arrays.toString(nums));
// System.out.println(" dp: " + Arrays.toString(dp));;
return res;
}
}
DP:写法2
以上 dp写法1中,将 d p [ i ] dp[i] dp[i] 表示以 i 结尾的连续子数组的和的最大值,需要单独处理 d p [ 0 ] dp[0] dp[0],较为复杂。
这里可以通过将 定义为 dp[n+1] 可以避免单独初始化 dp[0]
class Solution {
public int maxSubArray(int[] nums) {
int n = nums.length;
int res = nums[0];
// 定义为 dp[n+1] 可以避免单独初始化 dp[0]
int[] dp = new int[n + 1]; // dp[i]表示以i-1结尾的连续子数组的和的最大值
// 3、初始化(定义dp[n+1]不必单独初始化dp[0])
// 4、遍历顺序
for (int i = 1; i <= n; i++) {
// 2、递推公式
dp[i] = Math.max(dp[i - 1] + nums[i - 1], nums[i - 1]); // 上面写法的合并
res = Math.max(res, dp[i]); // 取dp[i]最大值
}
// 5、打印dp
// System.out.println("nums: " + Arrays.toString(nums));
// System.out.println(" dp: " + Arrays.toString(dp));;
return res;
}
}
- 时间复杂度: O ( n ) O(n) O(n)
- 空间复杂度:
O
(
n
)
O(n)
O(n)
剑指 Offer 47. 礼物的最大价值
题目描述
在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?
提示:
- 0 < g r i d . l e n g t h < = 200 0 < grid.length <= 200 0<grid.length<=200
-
0
<
g
r
i
d
[
0
]
.
l
e
n
g
t
h
<
=
200
0 < grid[0].length <= 200
0<grid[0].length<=200
DP
DP:写法1
思路:
-
d
p
[
i
]
[
j
]
dp[i][j]
dp[i][j] 表示从(0, 0)到(i, j)可以拿到的礼物的最大价值
int[][] dp = new int[m][n];
- 递推公式
当前位置 (i, j) 只能从其上方 或 左方而来(第一行、第一列单独考虑),所以取上 2 个位置的最大值。
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
- 初始化
这样设 d p [ m ] [ n ] dp[m][n] dp[m][n] 需要单独处理 d p [ i ] [ 0 ] dp[i][0] dp[i][0] 和 d p [ 0 ] [ j ] dp[0][j] dp[0][j],二者均为 左 (或 上)方 元素之和
class Solution {
public int maxValue(int[][] grid) {
int m = grid.length;
int n = grid[0].length;
int[][] dp = new int[m][n]; // dp[i][j]表示从(0, 0)到(i, j)可以拿到的礼物的最大价值
// 3、初始化
dp[0][0] = grid[0][0];
for (int i = 1; i < m; i++) {
dp[i][0] = dp[i - 1][0] + grid[i][0];
}
for (int j = 1; j < n; j++) {
dp[0][j] = dp[0][j - 1] + grid[0][j];
}
// 4、遍历顺序(从上到下,从左到右)
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
// 2、递推公式
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
}
}
// 5、打印dp
for (int i = 0; i < m; i++) {
System.out.println(Arrays.toString(dp[i]));
}
return dp[m - 1][n - 1];
}
}
- 时间复杂度: O ( n 2 ) O(n^2) O(n2)
- 空间复杂度: O ( n 2 ) O(n^2) O(n2)
DP:写法2(统一写法
) ⭐️
d p [ i ] [ j ] dp[i][j] dp[i][j] 表示从(0, 0)到 (i-1, j-1) 可以拿到的礼物的最大价值,可以避免单独处理 d p [ i ] [ 0 ] dp[i][0] dp[i][0] 和 d p [ 0 ] [ j ] dp[0][j] dp[0][j],二者均为 左 (或 上)方 元素之和。
即,int[][] dp = new int[m + 1][n + 1];
class Solution {
public int maxValue(int[][] grid) {
int m = grid.length;
int n = grid[0].length;
int[][] dp = new int[m + 1][n + 1]; // dp[i][j]表示从(0, 0)到(i-1, j-1)可以拿到的礼物的最大价值
// 3、初始化(定义dp[m+1][n+1]可以避免单独处理dp[i][0]、dp[0][j])
// 4、遍历顺序(从上到下,从左到右)
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
// 2、递推公式
dp[i][j] = Math.max(dp[i - 1][j], dp[i][j - 1]) + grid[i - 1][j - 1];
}
}
// 5、打印dp
for (int i = 0; i <= m; i++) {
System.out.println(Arrays.toString(dp[i]));
}
return dp[m][n];
}
}