2021-07-18

C++
函数的定义:

返回值类型 函数名(参数列表)

函数语句
return 表达式

返回值类型:一个函数可以返回一个值。在函数定义中

函数名:给函数起个名称

参数列表:使用该函数时,传入的数据

函数体语句:花括号内的代码,函数内需要执行的语句

return表达式:和返回值类型挂钩,函数执行完后,返回相应的数据

2.函数的调用

  1. 函数值传递
    不需要返回值的函数可以不写return

形参发生任何改变都不影响实参
4. 函数的常见样式

有参数无返回值
有参数有返回值
无参数无返回值
无参数有返回值

5.函数的声明

函数的分文件编写
1.创建.h后缀名的头文件

2.创建.cpp后缀名的源文件
3.在头文件中写函数的声明
注释:在.h文件中写的内容为:
#include
using namespacestd;
Int add(it a,intb);

4.在源文件中写函数的定义
#include".h文件"
int add(int a,int b)

{int sum;
sum=a+b;
return sum;
}

未分文件编写函数时的程序代码
#include
#include “add.h”
using namespace std;
int add(int a,int b);
int add(int a,int b)
{
int sum;
sum=a+b;
return sum;

}

int main ()
{
 int a=10;
 int b=20;
  int c=add(a,b); 
 cout <<"c=" <<c<<endl;
 
 return 0;
 
 }

2
int main(){

//1、指针的定义
int a=10;//定义整型变量a

//指针定义语法:数据类型*变量名; Int *p;

//指针变量赋值
10 p=&a;//指针指向变量a的地址
11 cout << &a << endl; //打印数据a的地址
12 cout < p<<endl; //打印指针变量p
13
14 //2、指针的使用
15 //通过*操作指针变量指向的内存
16 cout <<"p=<<*p<<endl;
17
18 system(“pause”);
19
20 return 0;
212
int main(){

//1、指针的定义
int a=10;//定义整型变量a

//指针定义语法:数据类型*变量名; Int *p;

//指针变量赋值
10 p=&a;//指针指向变量a的地址
11 cout << &a << endl; //打印数据a的地址
12 cout < p<<endl; //打印指针变量p
13
14 //2、指针的使用
15 //通过*操作指针变量指向的内存
16 cout <<"p=<<*p<<endl;
17
18 system(“pause”);
19
20 return 0;
21

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
基于YOLOv9实现工业布匹缺陷(破洞、污渍)检测系统python源码+详细运行教程+训练好的模型+评估 【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【特别说明】 *项目内容完全原创,请勿对项目进行外传,或者进行违法等商业行为! 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值