自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 收藏
  • 关注

原创 Centos新建用户及新用户不能通过ssh登录解决方案

如果遇到centos7新用户只能通过其他用户转 不能直接ssh登录的问题,把新用户添加到AllowUsers里就可以了。命令,可能是因为缺少必要的权限。打开SSH服务器配置文件。按照提示输入新用户的密码。

2024-01-12 18:00:33 1285 1

原创 python实现批量将word文档中表格提取拼接到一个excel表格中

【代码】python实现批量将word文档中表格提取拼接到一个excel表格中。

2023-11-06 10:28:56 314 1

原创 批量将word文档中表格转为excel教程

6.点击->运行->运行子过程/用户窗体,即可批量完成指定文件下所有word文档转为excel的操作。可以使用Microsoft Word的宏功能(VBA)来自动化任务。4.只需将下面代码的第十五行,更改为自己word文档的文件夹即可,

2023-09-02 17:24:19 1861 7

原创 python远程服务器运行本地python程序

在本地写好python程序,通过远程服务器运行。

2023-05-09 20:09:09 413

原创 pyinstaller 打包可执行文件过大的问题及过程中遇到的问题

F是打包为单独的一个执行文件(不带有其他文件夹),-i是添加程序的图标,-w是不带有控制台窗口,建议第一次打包的时候不要加-w,这样在运行时候报错的话,错误信息会出现在控制台窗口中,并且更值得注意的是,如果你的程序本身没有图形界面,那就更不要加-w的,这样就没有意义了,因为打开可执行文件,他什么窗口都不会出现。切记切记,一定要在虚拟环境中安装pyinstaller这个库,不然他还是会原有环境下的pyinstaller去打包程序,这个时候中间可能会出现找不到对应模块,或者动态链接库出问题的屁烂问题。

2023-03-21 14:35:09 551

原创 linux 打开终端,前面有base

把conda自动打开设置取消,再次打开shell就会发现消失。

2022-07-16 16:48:23 502

原创 ImportError: /lib64/libstdc++.so.6: version `CXXABI_1.3.9‘ not found (required by 报错

安装anaconda后,执行pyhton文件遇到ImportError/lib64/libstdc++.so.6version`CXXABI_1.3.9'notfound(requiredby/soft/Conda/anaconda3/lib/python3.9/site-packages/matplotlib/_path.cpython-39-x86_64-linux-gnu.so)报错。将anaconda目录。

2022-07-15 20:33:42 900

原创 [pyhton]神经网络保存与加载

第一种方法利用pickle方式第二种方式利用joblib

2022-06-02 11:05:59 263

原创 [Python]对fluent输出的无序的压力分布系数进行排序

对fluent输出的无序的压力分布系数进行排序

2022-01-06 21:41:54 1446

原创 [Centos7]查看系统信息

1.查看CPU型号:[user03@ibcn50 ~]$ cat /proc/cpuinfo | grep name | cut -f2 -d: | uniq -c 2.查看物理cpu个数:cat /proc/cpuinfo | grep "physical id" | sort | uniq|wc -l3.查看逻辑cpu的个数:cat /proc/cpuinfo | grep "processor" |wc -l4.查看cpu核心数:cat /proc/cpu

2022-01-05 23:02:17 1264

原创 [python]将已知排序规则的二维数组恢复原来顺序

def sort_reverse(data,indicates): recovery_data = np.zeros_like(data) for idx, num in enumerate(data2): for jdx, n in enumerate(num): recovery_data[idx, indicate_X[idx, jdx]] = n return recovery_data其中,data为按索引排好序的二维...

2022-01-04 16:41:12 666

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除