python——stack()和unstack()用法

本文介绍了Python pandas库中的stack()和unstack()函数。stack()将DataFrame的列转换为行,形成Series,而unstack()则是将Series的索引转换为列,恢复DataFrame结构。通过示例展示了它们的用法,包括连续使用unstack()进行数据转置。这两个函数在数据处理中用于重塑数据框,方便数据分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在python里面,有时候要对数据进行数据处理,有次在处理过程中,发现了这两个函数,stack()和unstack()函数,那么这两个函数究竟是什么意思呢?我们先看代码。

1.首先创建dataframe

import pandas as pd
f= { 'id':pd.Series(['Amy','Bob','Cathy','David','Harry'],index=[1,2,3,4,5]),
        'age':pd.Series([22,21,24,26],index=[1,2,3,4]),
       }
df1=pd.DataFrame(f)

创建完成以后,会形成dataframe形式,我们可以看到有一个缺失值Nan

2.使用stack()函数

a=df1.stack()
a

 

我们可以看到转为了一列,每行里,都存有dataframe的主要信息,我们可以使用type函数查看数据格式

type(a)

我们发现了它转为Series形式

3.unstack()函数

我们看看使用unstack()会发生什么事情

b=df1.unstack()
type(b)

 

我们也发现了它也转化为了Series形式,和stack()不同的是,unstack()函数是根据列名进行分类,而stack函数是根据index标签进行了分类

4.unstack函数可以连续使用

b=df1.unstack().unstack()
b

 发现进行了转置,使用type函数我们也可以发现格式为dataframe,如果想要再转回去,再使用unstack函数即可

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值