R语言使用lightgbm包构建多分类的LightGBM模型、使用predict函数和训练好的模型进行预测推理、将推理后的概率值转化为预测标签

本文介绍了如何使用R语言的lightgbm包构建多分类LightGBM模型,通过predict函数进行预测推理,并将概率值转换为预测标签。文章详细展示了LightGBM的优胜之处,如速度更快、内存更小,以及在数据集上的应用实例,包括数据预处理、模型训练和预测过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

statistics.insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值