R语言使用keras包实现包含多个全连接层的多分类预测模型:使用predict函数和训练好的多分类模型进行预测推理、输出多分类模型混淆矩阵(包含:准确率及其置信区、p值、Kappa、特异度、灵敏度等)

R语言keras深度学习:多分类模型预测与混淆矩阵分析
本文介绍了如何使用R语言的keras包构建多分类预测模型,通过predict函数进行推理,并详细展示了如何输出模型的混淆矩阵,包括准确率、置信区间、p值、Kappa、特异度和灵敏度等关键指标。

R语言使用keras包实现包含多个全连接层的多分类预测模型:使用predict函数和训练好的多分类模型进行预测推理、输出多分类模型混淆矩阵(包含:准确率及其置信区、p值、Kappa、特异度、灵敏度等)

目录

R语言使用keras包实现包含多个全连接层的多分类预测模型:使用predict函数和训练好的多分类模型进行预测推理、输出多分类模型混淆矩阵(包含:准确率及其置信区、p值、Kappa、特异度、灵敏度等)

Keras深度学习

导入包和框架

R语言使用keras包实现包含多个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

statistics.insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值