R语言可视化回归模型的残差直方图并进行残差分析(Histogram of Residuals)

本文介绍了如何使用R语言进行回归模型的残差分析,包括残差的正态分布假设、仿真数据、模型拟合以及使用ggplot2创建不同箱数的残差直方图,以直观检查残差分布是否接近正态。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

R语言可视化回归模型的残差直方图并进行残差分析(Histogram of Residuals)

目录

R语言可视化回归模型的残差直方图并进行残差分析(Histogram of Residuals)

#残差服从什么分布?

#仿真数据

#回归模型拟合

#ggplot2可视化回归模型的残差分布

#ggplot2可视化回归模型的残差分布(20个箱)

#ggplot2可视化回归模型的残差分布(10个箱)


See the source image

#残差服从什么分布?

线性回归的主要假设之一是残差服从正态分布。

直观地检验这个假设的一种方法是创建残差的直方图,并观察分布是否遵循“钟形”,使人联想到正态分布。

#仿真数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

statistics.insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值