R语言使用randomForest包中的randomForest函数构建随机森林模型、使用importance函数查看特征重要度、使用table函数计算混淆矩阵评估分类模型性能、包外错误估计OOB

R语言使用randomForest包中的randomForest函数构建随机森林模型、使用importance函数查看特征重要度、使用table函数计算混淆矩阵评估分类模型性能、包外错误估计OOB(out-of-bag error estimate)

目录

R语言使用randomForest包中的randomForest函数构建随机森林模型(Random forests)、使用importance函数查看特征重要度、使用table函数计算混淆矩阵评估分类模型性能、包外错误估计OOB(out-of-bag error estimate)

 #分类模型(classification)

#R语言加载UCI乳腺癌数据用于分类模型构建(uci dataset for classification)、并进行数据划分、数据划分为训练集和验证集(training sample (70%) and a validation sample (30%))

#R语言构建决策树模型的算法步骤、流程(decision tree algorithm tree build process or steps)

#R语言使用rpart包构建决策树模型、使用prune函数进行树的剪枝、使用10折交叉验证选择预测误差最低的树来预防过拟合、plotcp可视化决策树复杂度、rpart.plot包可视化最终决策树、使用table函数计算混淆矩阵评估分类模型性能

#R语言使用rpart包构建决策树模型、为了选择合适的树大小(复杂度)检查决策树对象的cptable内容(树的大小由分裂次数定义、预测误差)、使用plotcp函数可视化决策树复杂度参数与交叉验证错误的关系、选择合适的树大小(复杂度)

#R语言使用rpart包构建决策树模型、使用prune函数按照指定复杂度对决策树剪枝、使用rpart.plot包中的prp函数可视化训练、剪枝好的决策树、type参数、extra参数、fallen.leaves参数控制决策树精细化显示

 #R语言使用party包中的ctree函数构建条件推理决策树的流程和步骤(Conditional inference trees)、条件推理决策树是传统决策树的一个重要变体、条件推理树的分裂是基于显著性测试而不是熵/纯度/同质性度量来选择分裂

 #R语言使用party包中的ctree函数构建条件推理决策树(Conditional inference trees)、使用plot函数可视化训练好的条件推理决策树、条件推理决策树的叶子节点的阴影区域表示的是阳性样本的比例

 #R语言使用randomForest包中的randomForest函数构建随机森林模型的步骤和流程(Random forests)、随机森林算法包括抽样样本(观察)和变量来创建大量的决策树(多个树,构成了森林,而且通过样本抽样和变量抽样,让多个树尽量不同)

 #R语言使用randomForest包中的randomForest函数构建随机森林模型(Random forests)、使用importance函数查看特征重要度、使用table函数计算混淆矩阵评估分类模型性能、包外错误估计OOB(out-of-bag error estimate)</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

statistics.insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值