归并排序详解

本文深入介绍了归并排序算法,包括其基本原理、递归和非递归两种实现方式。通过示例和代码解析,详细阐述了如何将序列分解并有序合并,以及在边界条件处理上的注意事项。归并排序以其稳定的O(n*logn)时间复杂度展现出高效性能。
摘要由CSDN通过智能技术生成

前言

在前几篇博客中介绍了插入排序、选择排序、交换排序等内容,本篇博客则主要介绍归并排序,原因无他,其也依然是一种很优秀的排序;
在这里插入图片描述

1.归并排序的介绍

归并排序是建立在归并操作的一种有效的排序算法,该算法是采用分治法的一个很典型的应用;将已有序的序列进行合并,得到完全有序的序列;即子序列先有序然后回归合并形成一个新的有序的序列。

将上述意思翻译过来就是,将一个大问题分解成若干个小问题;也就是说将一个待排序的序列分解成两个规模大致相等的子序列,不断向下分解,直至子序列中元素个数为1,此时前面这个过程称之为分解;将分解后的序列进行有序合并到原来的序列中;这种算法就叫做归并排序!

下面给出例子感受归并排序的思路:
在这里插入图片描述

2.代码实现及分析

2.1归并

引入一个辅助数组temp[],设置begin1,begin2为两个待排序子序列中的起始位置,end1,end2是两个待排序子序列中的结束位置,设置 i 指向辅助数组==temp[]==中待放置元素的位置。比较arr[begin1]和arr[begin2],将较小值赋给辅助数组temp[],同时相应的位置向后移动即可。

合并的过程相对简单,在此就不进行演示了,不清楚的可以自行画一下流程或者进行调试即可:

int mid = (left + right) / 2;
int begin1 = left; int end1 = mid;
int begin2 = mid + 1; int end2 = right;
int i = left;
while (begin1 <= end1 && begin2 <= end2)
{
	if (arr[begin1] <= arr[begin2])
	{
		temp[i++] = arr[begin1++];
	}
	else
	{
		temp[i++] = arr[begin2++];
	}
}
while (begin1 <= end1)
{
	temp[i++] = arr[begin1++];
}
while (begin2 <= end2)
{
	temp[i++] = arr[begin2++];
}

//将排好序的数组temp重新放回arr中
memcpy(arr+left, temp+left, sizeof(int)*(right-left+1));

2.2递归实现归并排序

那么不断将区间进行分解,如上图给出的例子一样,当分解到序列中只有一个数据的时候开始进行合并操作,因此也就有了下面的递归操作,先分解数组在进行合并。

void _MergeSortRecursion(int* arr, int left, int right, int* temp)
{
	if (left >= right)
		return;
	
	//取中
	int mid = (left + right) / 2;

	//[left,mid]和[mid+1,right]
	//划分区间进行分解
	_MergeSortRecursion(arr, left, mid, temp);
	_MergeSortRecursion(arr, mid+1, right, temp);

	int begin1 = left; int end1 = mid;
	int begin2 = mid + 1; int end2 = right;
	int i = left;
	while (begin1 <= end1 && begin2 <= end2)
	{
		if (arr[begin1] <= arr[begin2])
		{
			temp[i++] = arr[begin1++];
		}
		else
		{
			temp[i++] = arr[begin2++];
		}
	}
	while (begin1 <= end1)
	{
		temp[i++] = arr[begin1++];
	}
	while (begin2 <= end2)
	{
		temp[i++] = arr[begin2++];
	}

	//将排好序的数组temp重新放回arr中
	memcpy(arr+left, temp+left, sizeof(int)*(right-left+1));

}
void MergeSortRecursion(int* arr, int n)
{
	int* temp = (int*)malloc(sizeof(int) * n);
	if (temp == NULL)
	{
		perror("malloc fail");
		return;
	}

	_MergeSortRecursion(arr, 0, n - 1, temp);
	free(temp);
	temp = NULL;
}

这就是归并排序的递归版本,要注意mid对于划分区间有着重要的作用;其中memcpy这个库函数在前面的博客字符串相关函数中我介绍过,起作用就是将src空间的数据按提供的字节数拷贝进dst空间,相比于strcpy控制的更加细致,而且可以操控各种数据,在此就不过多介绍了。

2.3非递归实现归并排序

在了解完递归实现归并排序后,继而有非递归的版本,其实在先前的递归中,如果进行过调试或者手动画出过相关的流程的话,不难得出其归并的区间:
在这里插入图片描述
上图就可以很好的体现出归并时相关区间的范围,也就是说先两个数据有序的合并到一个区间,此时这个区间就存在2个数据了,依次类推,再将两个这样的区间在此进行有序合并,重复这个过程即可完成数组的排序。

而上述区间划分等内容在非递归中则需要进行严格控制!

//非递归实现归并排序
void MergeSortNonRecursion(int* arr, int n)
{
	int* temp = (int*)malloc(sizeof(int) * n);
	if (temp == NULL)
	{
		perror("malloc fail");
		return;
	}
	int gap = 1;
	while (gap < n)
	{
		for (int j = 0; j < n; j += 2 * gap)
		{
			int begin1 = j, end1 = j + gap - 1;
			int begin2 = j + gap, end2 = j + 2 * gap - 1;
			int i = j;
            //
			if (end1 >= n)
			{
				break;
			}
			if (begin2 >= n)
			{
				break;
			}
			if (end2 >= n)
			{
				//修正
				end2 = n - 1;
			}
			//
			printf("[%d,%d] [%d,%d] ",begin1, end1, begin2, end2);
			while (begin1 <= end1 && begin2 <= end2)
			{
				if (arr[begin1] <= arr[begin2])
				{
					temp[i++] = arr[begin1++];
				}
				else
				{
					temp[i++] = arr[begin2++];
				}
			}
			while (begin1 <= end1)
			{
				temp[i++] = arr[begin1++];
			}
			while (begin2 <= end2)
			{
				temp[i++] = arr[begin2++];
			}
			//每进行一次for循环就拷贝一次,而每次处理的数据位置是不一样的,所以按照位置拷贝返回
			//end2是第二组的最大值,end-j+1就是数据个数
			memcpy(arr+j, temp+j, (end2-j+1) * sizeof(int));
		}
		printf("\n");
		gap *= 2;
	}
	free(temp);
	temp = NULL;
}

下面关于非递归的代码进行解释:

1.为什么设定gap=1开始,gap的含义是什么呢?

gap其实就是划分的子序列中元素的个数,也就是划分左右子区间后这个区间的元素个数;而gap=1则就是上图划分的第一行内容即:在这里插入图片描述
也就是将数据个数为1的序列进行两两合并,之后每次给gap*2也就是前面我们分析的,最后也就会形成一个有序的序列了。

2.代码中的if else 等条件是做什么用的呢?

第一个问题当中,gap的大小也代表了序列的数据个数,此时就存在了当划分成2个序列后,这2个序列数据个数相加即2*gap是大于n的,此时第2个序列就存在全部越界和部分越界的问题了,所以需要进行优化修正处理!

3.memcpy在程序中如何进行拷贝?

每进行一次for循环拷贝一次,也就是说只要完成1次for循环temp数组中排序好的部分数据就会拷贝给数组中,所以拷贝的起始位置也要根据for循环中的 j 的不同而改变,同理拷贝进去的数据个数要随着gap的不同而改变,但是却是借助着end2去实现的,这一点可以结合例子去体会,不清楚的可以私信或者评论🤠

相比较于其他排序,归并排序的效率也很不错:O(n * log n)
;

Ending

关于归并排序的介绍也就到此为止了,唯一比较麻烦的就是非递归版本的边界问题;对于递归版本而言最高效的理解就是画出递归的函数调用图,这样就可以很直观的感受到递归时的函数区间边界问题了!

在这里插入图片描述

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Kkkkvvvvvxxx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值