老王决策规划算法凸优化与非凸优化

本文介绍了自动驾驶决策规划中涉及的优化算法,包括梯度下降法及其在凸优化问题中的应用,并探讨了静态与动态避障的基本原理。通过在满足避障条件的空间内采样寻找最优解,实现路径规划。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

自动驾驶决策规划算法第一章第二节 凸优化与非凸优化

 

 

 

 

 

 

 

梯度下降法(按每个点一阶导的正负的反方向迭代,如果某个点的一阶导是负的,则下个点取正方向的一个点,反之则取负方向的一个点,迭代的步长取决于导数绝对值的大小)

 

 

 

凸优化

 

凸函数和凸空间:

 

凸优化:

 

凸多边形和凹多边形:

 

凸空间和非凸空间:

 

 

 

静态避障

 

动态避障

 

 

 

在满足避障的空间进行撒点采样,找到约束条件下的最小值。本质上是连续空间离散化后,离散约束空间的最优解。

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值