一、方法重载
1.1 为什么需要方法重载
public class TestMethod {
public static void main(String[] args) {
int a = 10;
int b = 20;
int ret = add(a, b);
System.out.println("ret = " + ret);
double a2 = 10.5;
double b2 = 20.5;
double ret2 = add(a2, b2);
System.out.println("ret2 = " + ret2);
}
public static int add(int x, int y) {
return x + y;
}
}
// 编译出错
Test.java:13: 错误: 不兼容的类型: 从double转换到int可能会有损失
double ret2 = add(a2, b2);
^
由于参数类型不匹配, 所以不能直接使用现有的 add 方法.
一种比较简单粗暴的解决方法如下:
public class TestMethod {
public static void main(String[] args) {
int a = 10;
int b = 20;
int ret = addInt(a, b);
System.out.println("ret = " + ret);
double a2 = 10.5;
double b2 = 20.5;
double ret2 = addDouble(a2, b2);
System.out.println("ret2 = " + ret2);
}
public static int addInt(int x, int y) {
return x + y;
}
public static double addDouble(double x, double y) {
return x + y;
}
}
上述代码确实可以解决问题,但不友好的地方是:需要提供许多不同的方法名,而取名字本来就是让人头疼的事情。那能否将所有的名字都给成 add 呢?
1.2 方法重载概念
在自然语言中,一个词语如果有多重含义,那么就说该词语被重载了,具体代表什么含义需要结合具体的场景。
在Java中方法也是可以重载的。
在Java中,如果多个方法的名字相同,参数列表不同,则称该几种方法被重载了。
public class TestMethod {
public static void main(String[] args) {
add(1, 2); // 调用add(int, int)
add(1.5, 2.5); // 调用add(double, double)
add(1.5, 2.5, 3.5); // 调用add(double, double, double)
}
public static int add(int x, int y) {
return x + y;
}
public static double add(double x, double y) {
return x + y;
}
public static double add(double x, double y, double z) {
return x + y + z;
}
}
【注意】:
- 方法名必须相同
- 参数列表必须不同(参数的个数不同、参数的类型不同、类型的次序必须不同)
- 与返回值类型是否相同无关
- 编译器在编译代码时,会对实参类型进行推演,根据推演的结果来确定调用哪个方法
// 注意:两个方法如果仅仅只是因为返回值类型不同,是不能构成重载的
public class TestMethod {
public static void main(String[] args) {
int a = 10;
int b = 20;
int ret = add(a, b);
System.out.println("ret = " + ret);
}
public static int add(int x, int y) {
return x + y;
}
public static double add(int x, int y) {
return x + y;
}
}
// 编译出错
Test.java:13: 错误: 已在类 Test中定义了方法 add(int,int)
public static double add(int x, int y) {
^
1 个错误
1.3 方法签名
在同一个作用域中不能定义两个相同名称的标识符。比如:方法中不能定义两个名字一样的变量,那为什么类中就可以定义方法名相同的方法呢?
方法签名即:经过编译器编译修改过之后方法最终的名字。具体方式:方法全路径名+参数列表+返回值类型,构成方法完整的名字。
方法签名中的一些特殊符号说明:
二、递归
2.1 递归的概念
一个方法在执行过程中调用自身, 就称为 “递归”.
递归相当于数学上的 “数学归纳法”, 有一个起始条件, 然后有一个递推公式.
例如, 我们求 N!
起始条件: N = 1 的时候, N! 为 1. 这个起始条件相当于递归的结束条件.
递归公式: 求 N! , 直接不好求, 可以把问题转换成 N! => N * (N-1)!
递归的必要条件:
1. 将原问题划分成其子问题,注意:子问题必须要与原问题的解法相同
2. 递归出口
代码示例: 递归求 N 的阶乘
public static void main(String[] args) {
int n = 5;
int ret = factor(n);
System.out.println("ret = " + ret);
}
public static int factor(int n) {
if (n == 1) {
return 1;
}
return n * factor(n - 1); // factor 调用函数自身
}
// 执行结果
ret = 120
2.2 递归执行过程分析
递归的程序的执行过程不太容易理解, 要想理解清楚递归, 必须先理解清楚 “方法的执行过程”, 尤其是 “方法执行结束之后, 回到调用位置继续往下执行”.
代码示例: 递归求 N 的阶乘
public static void main(String[] args) {
int n = 5;
int ret = factor(n);
System.out.println("ret = " + ret);
}
public static int factor(int n) {
System.out.println("函数开始, n = " + n);
if (n == 1) {
System.out.println("函数结束, n = 1 ret = 1");
return 1;
}
int ret = n * factor(n - 1);
System.out.println("函数结束, n = " + n + " ret = " + ret);
return ret;
}
// 执行结果
函数开始, n = 5
函数开始, n = 4
函数开始, n = 3
函数开始, n = 2
函数开始, n = 1
函数结束, n = 1 ret = 1
函数结束, n = 2 ret = 2
函数结束, n = 3 ret = 6
函数结束, n = 4 ret = 24
函数结束, n = 5 ret = 120
ret = 120
程序按照序号中标识的 (1) -> (8) 的顺序执行
关于 “调用栈”
方法调用的时候, 会有一个 “栈” 这样的内存空间描述当前的调用关系. 称为调用栈.
每一次的方法调用就称为一个 “栈帧”, 每个栈帧中包含了这次调用的参数是哪些, 返回到哪里继续执行等信息.
后面我们借助 IDEA 很容易看到调用栈的内容.
2.3 递归练习
代码示例1 按顺序打印一个数字的每一位(例如 1234 打印出 1 2 3 4)
public static void print(int num) {
if (num > 9) {
print(num / 10);
}
System.out.println(num % 10);
}
代码示例2 递归求 1 + 2 + 3 + … + 10
public static int sum(int num) {
if (num == 1) {
return 1;
}
return num + sum(num - 1);
}
代码示例3 写一个递归方法,输入一个非负整数,返回组成它的数字之和. 例如,输入 1729, 则应该返回1+7+2+9,它的和是19
public static int sum(int num) {
if (num < 10) {
return num;
}
return num % 10 + sum(num / 10);
}
代码示例4 求斐波那契数列的第 N 项
public static int fib(int n) {
if (n == 1 || n == 2) {
return 1;
}
return fib(n - 1) + fib(n - 2);
}
当我们求 fib(40) 的时候发现, 程序执行速度极慢. 原因是进行了大量的重复运算.
class Test {
public static int count = 0;
public static void main(String[] args) {
System.out.println(fib(40));
System.out.println(count);
}
public static int fib(int n) {
if (n == 1 || n == 2) {
return 1;
}
if (n == 3) {
count++;
}
return fib(n - 1) + fib(n - 2);
}
}
// 执行结果
102334155
39088169 // fib(3) 重复执行了 3 千万次.
可以使用循环的方式来求斐波那契数列问题, 避免出现冗余运算
public static int fib(int n) {
int last2 = 1;
int last1 = 1;
int cur = 0;
for (int i = 3; i <= n; i++) {
cur = last1 + last2;
last2 = last1;
last1 = cur;
}
return cur;
}
此时程序的执行效率大大提高了.