【LLM】大语言模型基础知识及主要类别架构

LLM大语言模型

1.LLM基础知识

1.1大模型介绍:

  • 定义
大语言模型 (英文:Large Language Model,缩写LLM) 是一种人工智能模型, 旨在理解和生成人类语言. 大语言模型可以处理多种自然语言任务,如文本分类、问答、翻译、对话等等.
通常, 大语言模型 (LLM) 是指包含数千亿 (或更多) 参数的语言模型(目前定义参数量超过10B的模型为大语言模型),这些参数是在大量文本数据上训练的,例如模型 GPT-3、ChatGPT、GLM、BLOOM和 LLaMA等.
  • 语言模型的发展历程
    • 基于transformer架构,做基础的预训练过程,典型的模型:BERT,GPT
    • 逐步扩大模型参数和训练语料规模 代表是BERT,T5,GPT-3等
    • AIGC时代,超过百亿千万亿参数的模型,模型架构为自回归架构,大模型走向对话式,生成式,多模态时代 代表是ChatGPT GPT-4等

在这里插入图片描述

1.2语言模型

  • 定义
简单理解: 判断一句话发生的概率,(也可以理解成,判断一句话是不是人话)
标准定义: 假如一个句子为s=[w1, w2,...,wn],语言模型是计算当前句子发生的概率,即:p(s)=p(w1,w2,..2n).如果当前句子符合人类日常用语表达习惯,概率值就大,否则,就小
  • 分类
    • 基于规则和统计的语言模型:N-gram
      • 参数空间过大:条件概率的可能性太多
      • 数据稀疏严重
    • 神经网络模型
    • 基于transformer的预训练语言模型
    • 大语言模型
1.21n-gram语言模型
  • 定义:

    在计算p(s)=p(w1,w2,..2n),引入马尔可夫性假设,当前词发生的概率只依赖于它前面的有限的词
    
  • unigram一元语言模型

    • 如果一个词的出现与它周围的词是独立的,那么我们就称之为unigram也就是一元语言模型.
    • 在这里插入图片描述
  • bigram语言模型

    • 当前词发生的概率只依赖于它前面的一个单词
    • 在这里插入图片描述
  • trigram语言模型

    • 当前词发生的概率只依赖于它前面的两个单词
    • 在这里插入图片描述
  • 特点:

    • 容易理解,但是泛化性能较差
1.22神经网络语言模型
  • 定义:

    基于Linear实现神经网络的搭建,由上文来预测下一个单词
    
  • 特点:

    • 相比较N-gram, 更好的泛化性能,但是对长序列的建模能力有限,可能会出现梯度消失的问题
1.23基于Transformer的预训练语言模型
  • 定义:

    基于Transfomer架构衍生出各种类型的模型,比如:bert、gpt等模型,实现由上文预测下文的任务
    
  • 特点:

    • 模型特征更加丰富,性能更好,但是计算资源需求大,可解释性差
1.24大语言模型
  • 定义:

    基于Transfomer架构衍生出各种类型的模型,比如:ChatGPT、Llama等模型,实现由上文预测下文的任务
    
  • 特点:

    • 像"人类"一样的智能,可以完成对话形式的任务

1.3模型评估指标

  • 常见指标:
    • 准确率:模型预测正确的样本数占总样本数
    • 精确率:在识别为正类别的样本中,正类别的比例
    • 召回率:在所有正类别样本中,被识别为正类别的比例
    • BLEU: 将语言翻译为另一种语言的文本质量指标,取值范围[0,1],越接近1质量越好
    • ROUGE: 模型生成的回答与参考答案进行比较计算
    • PPL: 用来衡量一个概率分布或概率模型预测样本的好坏程度,PPL越小,表明模型越好
1.31 BLEU

定义:

  评估文本翻译的质量;bleu值范围【0-1】,值越大,翻译质量越好,否则,越差
  • 基本步骤:

    • 一般基于N-gram指标来计算,所以首先分别去计算生成文本的N-Gram,再计算真实文本的N-Gram,最后统计匹配的个数
    • 基于匹配的N-gram个数/生成文本的N-Gram总个数
  • 代码实现:

    # # 第一步安装nltk的包-->pip install nltk
    import torch
    from nltk.translate.bleu_score import sentence_bleu
    import math
    def cumulative_bleu(reference, candidate
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值