计算机的运行速度主要取决于CPU的频率,一般CPU的频率标注为**GHz,例如2.5GHz,在计算机中1Hz代表计算机的CPU在单位时间内运行一次。
频率的换算关系为1GHz=1000MHz;1MHz=一百万Hz=10^6Hz;
本计算机的频率为2.5GHz,用换算公式后得到的结果就是25亿Hz,但是CPU的过程并不是完成一次加法就是运算一次,CPU内部有各种线程,可能要运行十几次才能完成一次加法;可以编写程序测试一下计算机的运行速度,在以下的案例中,分别编写时间复杂度为O(n)、O(n^2)、O(n*logn)的程序
#include<iostream>
#include<chrono>
#include<thread>
using namespace std;
using namespace chrono;
//测试时间复杂度为O(n)的程序
void fun1(long long n){
long long k = 1;
for (long long j = 0; j < n; ++j){
k++;
}
}
//测试时间复杂度为O(n^2)的程序
void fun2(long long n){
long long k = 1;
for (long long i = 0; i < n; ++i) {
for (long long j = 0; j < n; ++j) {
k++;
}
}
}
//测试时间复杂度为O(n*logn)的程序
void fun3(long long n) {
long long k = 1;
for (long long i = 0; i < n; ++i) {
for (long long j = 1; j < n; j = j * 2) {
k++;
}
}
}
int main()
{
long long n; //输入数据的规模
while (true) {
cout << "输入:";
cin >> n;
milliseconds start_time = duration_cast<milliseconds>(system_clock::now().time_since_epoch());
fun1(n);
milliseconds end_time = duration_cast<milliseconds>(system_clock::now().time_since_epoch());
cout << "耗时:" << milliseconds(end_time).count() - milliseconds(start_time).count() << "ms" << endl;
}
}
解释以下,为什么fun3的时间复杂度是O(n*logn),外层循环n次、内层循环log2(n)。
O(n)的时间复杂度
也就是说计算五千万个数量级,耗费时间为136ms(这里计算的是1累加到5千万);
可以推理,对于O(n^2)的时间复杂度,能计算的数量级要在O(n)的基础上开根号,
显然可以得出结论,时间复杂度越低,计算相同数量级数据耗时越少