目录
一:Pandas库的引用
Pandas是Python第三方库,提供高性能易用数据类型和分析工具。
import pandas as pd
Pandas基于NumPy实现,常与NumPy和Matplotlib一同使用。
二:Pandas库的理解
两个数据类型:Series,DataFrame
基于上述数据类型的各类操作
基本操作、运算操作、特征类操作、关联类操作
NumPy | Pandas |
---|---|
基础数据类型 | 扩展数据类型 |
关注数据的结构表达 | 关注数据的应用表达 |
维度:数据间关系 | 数据与索引间关系 |
三:Series类型
Series类型由一组数据及与之相关的数据索引(自动索引或自定义索引)组成
自动索引示例:
自定义索引示例:
1:Series类型的创建
a:从Python列表类型创建
index与列表元素个数一致
b:从标量值创建
index表达Series类型的尺寸
c:从Python字典类型创建
键值对中的‘键’是索引,index从字典中进行选择操作
d:从ndarray类型创建
索引和数据都可以通过ndarray类型创建
注意:索引的个数和值的个数必须相等,否则会出错
e:从其他函数创建
2:Series类型的基本操作
a:Series类型包括index和values两部分
.index 获得索引
.values 获得数据
自动索引和自定义索引并存
两套索引并存但不能混用
b:Series类型的操作类似ndarray类型
索引方法相同,采用[]
NumPy中运算和操作可用于Series类型
可以通过自定义索引的列表进行切片
可以通过自动索引进行切片,如果存在自定义索引,则一同被切片
c:Series类型类似Python字典类型
通过自定义索引访问
保留字in操作
使用.get()方法