Pandas库的Series类型

目录

一:Pandas库的引用

二:Pandas库的理解

三:Series类型

1:Series类型的创建

a:从Python列表类型创建

b:从标量值创建

c:从Python字典类型创建

d:从ndarray类型创建

e:从其他函数创建

2:Series类型的基本操作

a:Series类型包括index和values两部分

b:Series类型的操作类似ndarray类型

c:Series类型类似Python字典类型


一:Pandas库的引用

Pandas是Python第三方库,提供高性能易用数据类型和分析工具。

import pandas as pd

Pandas基于NumPy实现,常与NumPy和Matplotlib一同使用。 

二:Pandas库的理解

两个数据类型:Series,DataFrame

基于上述数据类型的各类操作

基本操作、运算操作、特征类操作、关联类操作

NumPy与Pandas的比对
NumPyPandas
基础数据类型扩展数据类型
关注数据的结构表达关注数据的应用表达
维度:数据间关系数据与索引间关系

三:Series类型

Series类型由一组数据及与之相关的数据索引(自动索引或自定义索引)组成

自动索引示例:

自定义索引示例:

1:Series类型的创建

a:从Python列表类型创建

index与列表元素个数一致

b:从标量值创建

index表达Series类型的尺寸

c:从Python字典类型创建

键值对中的‘键’是索引,index从字典中进行选择操作

d:从ndarray类型创建

索引和数据都可以通过ndarray类型创建

 注意:索引的个数和值的个数必须相等,否则会出错

e:从其他函数创建

2:Series类型的基本操作

a:Series类型包括index和values两部分

.index 获得索引

.values 获得数据

自动索引和自定义索引并存

两套索引并存但不能混用

b:Series类型的操作类似ndarray类型

索引方法相同,采用[]

NumPy中运算和操作可用于Series类型

可以通过自定义索引的列表进行切片

可以通过自动索引进行切片,如果存在自定义索引,则一同被切片

 

c:Series类型类似Python字典类型

通过自定义索引访问

保留字in操作

使用.get()方法

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值