自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(21)
  • 收藏
  • 关注

原创 时序替换实时?是否必要

在数据密集型应用场景下时序数据库(TSDB)是否有必要替换传统实时数据库(RTDB)?随着物联网、工业互联网和金融科技等领域对时间序列数据处理需求的爆炸式增长,传统实时数据库在性能、扩展性和成本效益等方面面临严峻挑战。通过对比分析两种数据库的技术特点和应用场景,本文阐述了时序数据库在处理高频时间序列数据方面的显著优势,包括更高的写入吞吐量、更优的压缩效率、更强大的时间维度查询能力以及更低的存储成本。研究结果表明,在特定应用场景下用时序数据库替代实时数据库可以显著提升系统性能并降低总体拥有成本。

2025-06-04 11:43:22 681

原创 语言or时序?大模型该怎么选?

随着ChatGPT等大语言模型的爆红,公众对AI的认知往往局限于语言生成能力,而忽视了专门处理时间序列数据的模型体系。本文将从模型架构、数据要求、训练方式、应用场景等维度系统分析这两类模型的本质区别,帮助读者理解它们各自的优势与局限性,从而在实际问题中做出更明智的技术选择。经典的时间序列模型包括ARIMA(自回归综合移动平均)、状态空间模型,以及现代的深度时序模型如LSTM、TCN(Temporal Convolutional Network)和Transformer时序变体。

2025-06-03 09:56:44 932

原创 数据库选型指南:关系or时序?一文搞懂

在数字化转型的背景下,物联网(IoT)、工业互联网等领域产生的时序数据呈现爆发式增长。传统关系型数据库(如MySQL、Oracle)在处理这类数据时面临性能瓶颈,而时序数据库(Time Series Database, TSDB)凭借其针对性设计逐渐成为替代方案。传感器设备 → EdgeX Foundry(边缘采集) → Apache Kafka(消息队列) → IoTDB(时序存储) → Grafana(可视化)采用二维表结构,通过主键和外键建立数据关联,适合处理事务性数据(如订单、用户信息)。

2025-05-15 12:43:32 961

原创 《时序数据库全球格局:国产与国外主流方案的对比分析》

时序数据库(Time Series Database, TSDB)是专门用于存储、查询和分析时间序列数据的数据库系统,广泛应用于物联网(IoT)、金融、工业监控、智能运维等领域。未来,随着5G和工业互联网的发展,IoTDB等国产时序数据库有望在全球市场占据更重要的地位。时序数据是按时间顺序记录的数据点序列,通常包含时间戳和数值,例如传感器数据、股票价格、服务器监控指标等。是最流行的开源时序数据库之一,由InfluxData公司开发,广泛应用于监控和IoT场景。

2025-05-09 18:10:17 867

原创 《开源先锋Apache软件基金会:历史沿革、顶级项目与行业影响》

是全球最大的开源软件组织之一,成立于1999年,是一个非营利性机构,致力于为公共利益提供开源软件。未来,ASF将继续推动技术创新,维护开源生态的开放与中立。为核心原则,管理着数百个顶级开源项目,涵盖Web服务器、大数据、云计算、人工智能等多个领域。:Apache Group正式成立Apache软件基金会(ASF),以更规范地管理开源项目。:成为全球开源生态系统的核心支柱,促进软件行业的开放、共享和可持续发展。:每个Apache项目由PMC管理,确保项目健康发展。:拥有代码提交权限的开发者,由PMC提名。

2025-05-08 14:21:39 835

原创 《商业世界的开源法则:协议选择与商业模式创新》

开源协议(Open Source License)是授予用户使用、修改和分发软件源代码的法律许可文件。与专有软件许可证不同,开源协议的核心在于保障用户的"四大自由":使用自由、研究自由、分发自由和改进自由。开源协议与商业使用之间的关系绝非对立,而是日益紧密的共生关系。恰当的开源协议选择能够为商业创新提供坚实基础,而健康的商业模式又能反哺开源生态的持续繁荣。在数字化经济时代,理解并善用这种关系,将是技术驱动型企业核心竞争力的重要组成部分。

2025-04-28 09:59:23 752

原创 《时序数据库如何重塑钢铁行业?——高效管理海量数据,驱动智能制造升级》

这些数据包括温度、压力、能耗、设备状态等关键参数,对生产过程的监控、优化和故障预测至关重要。传统的关系型数据库在处理高频、大规模的时序数据时面临存储效率低、查询性能差等问题,而时序数据库(Time Series Database, TSDB)凭借其高效的数据压缩、快速写入和优化的时间范围查询能力,成为钢铁行业数据管理的理想选择。通过设备监测、能源优化、工艺改进等场景的应用,企业能够提升生产效率、降低能耗、减少故障停机时间。:实时同步炉温、压力、原料配比等数据,模拟不同工况下的生产效率。

2025-04-25 15:21:33 800

原创 开源访问受限?GitHub的替代选择:Gitee使用指南

Gitee是开源中国(OSChina)推出的代码托管平台,提供类似于GitHub的服务,包括:代码托管版本控制协作开发项目管理持续集成虽然GitHub是全球最大的代码托管平台,但在访问受限时,Gitee提供了一个稳定可靠的替代选择。对于主要用户在中国大陆的开发者来说,Gitee的本地化服务和更快的访问速度也能带来更好的开发体验。像IoTDB开源版始终保持“双活代码仓库”策略,即使面对第三方平台服务波动,开发者仍可通过 Gitee 中国代码托管平台获取完整源代码。

2025-04-14 16:27:20 1213

原创 《为什么特斯拉用IoTDB监控工厂,而拼多多用Doris做秒级营销?》

对于企业而言,理解两者的能力边界,构建融合时序存储与实时分析的混合架构,将是释放数据价值的关键。在智能制造领域,采用IoTDB+Doris的组合方案,可使设备数据分析效率提升70%,决策响应速度提高3倍,充分验证了专业化数据库系统的组合价值。随着工业4.0、智慧城市、金融科技等领域的快速发展,数据规模呈指数级增长,传统通用型数据库(如MySQL、PostgreSQL)已难以满足特定场景下的高性能需求。,支持冷热数据自动迁移,如热数据存SSD,冷数据存HDFS/对象存储。

2025-04-09 09:32:15 1022

原创 时序数据库选型必读系列:IoTDB 与 OpenTSDB 的核心差异与应用场景

场景适配性专为物联网设计,支持设备元数据(Schema)动态管理、高频数据采集、断网续传等特性,适配工业传感器、车联网等复杂场景。资源效率单机版内存占用可低至百MB级,边缘设备可直接部署;存储成本降低至OpenTSDB的1/5~1/10。国产化支持作为Apache顶级项目,IoTDB已与华为鲲鹏、麒麟OS等国产化生态完成兼容认证。运维成本提供一键部署工具、监控Dashboard和自动化故障恢复机制,运维复杂度远低于OpenTSDB+HBase组合。

2025-04-07 18:58:47 604

原创 时序数据库选型必读系列:IoTDB 与 TDengine 的核心差异与应用场景

工业级数据建模:树形结构天然适配设备层级管理,降低业务系统改造成本。端边云协同架构:从边缘轻量化到云端分布式,提供全链路解决方案。开源友好性:Apache协议降低企业法律风险,社区驱动迭代速度快。生态完备性:与工业协议、大数据组件深度集成,减少技术栈碎片化。对于需要处理复杂设备关系、追求端到端解决方案的企业,IoTDB在架构灵活性和场景适配度上展现明显优势,尤其适合智能制造、能源电力等工业物联网场景。

2025-04-02 10:48:39 859

原创 《从原理到实践:时序数据库底层文件格式(TsFile/TTSM/TSDB)深度测评》

TsFile作为专为物联网设计的时序文件格式,在传感器数据存储方面展现出明显优势,特别是在写入性能和边缘计算场景。技术选型应综合考虑数据类型、查询模式、部署环境和团队技能等因素。随着物联网(IoT)、工业互联网和监控系统的快速发展,时序数据管理需求呈爆炸式增长。时序数据库作为专门处理时间序列数据的系统,其底层文件格式设计直接影响数据写入效率、查询性能和存储成本。本文将对主流时序数据库的底层文件格式进行深入对比,重点分析TsFile与其他格式的异同。:专为物联网场景优化的高效时序数据存储。

2025-04-01 16:27:45 773

原创 《主流数据库可视化工具全维度评测与选型指南》

数据库可视化工具的选择应基于具体需求、技术栈和预算综合考虑。随着技术的不断发展,这些工具也在持续演进,功能界限逐渐模糊。建议读者利用免费试用期或社区版本亲自体验,找到最能提升工作效率的解决方案。无论选择哪款工具,掌握其核心功能并将其融入日常工作流程,都将显著提升数据管理和分析能力,为业务决策提供更有力的支持。

2025-03-27 14:32:47 1166

原创 《打破认知:关系型数据库在时序场景中为何力不从心?》

关系型数据库和时序数据库各有其设计哲学和优化方向,不存在绝对的优劣之分。理解它们的核心差异有助于我们做出合理的架构决策。对于时间序列数据占比高的场景,采用专用时序数据库可以带来显著的性能提升和运维简化;而对于需要复杂事务和关系处理的业务系统,关系型数据库仍是不可替代的基础。随着技术的演进,两者的边界可能逐渐模糊,但深入理解其底层原理将始终是数据库选型和优化的关键。

2025-03-26 09:37:04 740

原创 《乱序数据写入的挑战与突破:时序数据库核心技术解析》

随着物联网应用的深入发展,具备优秀乱序处理能力的时序数据库将成为企业数据架构的关键组件。乱序数据若不妥善处理,会导致查询结果不准确、存储结构低效、压缩率下降等一系列问题,因此各时序数据库产品都设计了专门的机制来处理这一挑战。作为专注于工业物联网场景的时序数据库,在乱序数据处理方面表现出众,其设计充分考虑了工业环境中常见的网络不稳定、设备时钟不同步等现实问题。将时间轴划分为固定大小的窗口(如5分钟、1小时等),允许窗口内的数据乱序写入,但保证窗口间的有序性。这种方法写入性能高但查询时可能需要额外处理。

2025-03-25 15:21:02 1085

原创 [特殊字符] 「为什么你的数据库越存越慢?高压缩比设计的3个关键取舍」——从Zstandard到IoTDB,破解存储成本与查询性能的终极矛盾

在物联网(IoT)场景中,设备持续产生海量时序数据(如传感器读数、设备状态),这类数据通常具有高写入频率、时间戳有序、数值变化平缓等特点。按时间窗口(如1小时)将数据划分为块,块内数据按时间戳排序后,结合差分编码(存储与前一个值的差值)和LZ4压缩算法,进一步消除冗余。对历史冷数据启用高压缩比算法(如ZSTD),而对热数据采用低延迟压缩算法(如SNAPPY),兼顾查询性能与存储成本。数据分布:局部性强的数据(如时间序列数据)更容易被压缩算法识别模式,而随机分布的数据(如加密内容)压缩比低。

2025-03-24 13:58:36 705

原创 数据存储新纪元:列式写入 vs 行式写入,谁是你的最佳选择?

首先,列式存储针对时序数据的高频写入特性进行了深度优化,能够高效处理海量设备并发产生的数据流,实现百万级数据点/秒的高吞吐写入,满足物联网场景的实时性要求。传统的行式存储和新兴的列式存储代表了两种截然不同的数据组织方式,它们在数据写入操作上展现出显著的性能差异。每个数据页仅包含单列数据,不同列的数据分别存储在不同的文件或数据块中。以员工信息表为例,所有员工的ID存储在一起,所有姓名存储在一起,形成独立的列存储单元。行式存储需要将整行数据写入同一个数据页,而列式存储则需要将不同列的数据写入各自的存储单元。

2025-03-21 09:36:11 435

原创 从萌芽到万物互联:时序数据库演进史

例如,一个存储7天数据的RRD文件,每天生成1440个数据点(每分钟一个点),当数据超过7天后,旧数据会被新数据覆盖。例如,金融领域的股票交易数据每秒可能产生数万条记录,关系型数据库的索引机制(如B+树)虽然适合随机查询,但面对时间序列数据的高写入负载时,性能急剧下降。TimescaleDB(2017年发布):基于PostgreSQL的时序数据库扩展,通过“时间分片(chunking)”技术将数据按时间分区存储,每个分片继承PostgreSQL的行式存储特性,同时支持SQL语法和复杂查询。

2025-03-17 11:10:38 698

原创 时序数据库选型必读系列:IoTDB 与 DolphinDB 的核心差异与应用场景

IoTDB 和 DolphinDB 都是优秀的时序数据库,但在工业物联网场景下,IoTDB 凭借其灵活的数据模型、高效的查询性能、开放的生态系统和广泛的应用场景,展现出更明显的优势。如果您需要处理工业物联网、车联网、智慧城市等场景下的海量设备数据,并进行实时监控、故障诊断、预测性维护等应用,IoTDB 是更合适的选择。IoTDB: 更适用于工业物联网、车联网、智慧城市等场景,能够高效地处理海量设备数据,并提供实时监控、故障诊断、预测性维护等应用。在工业物联网领域拥有更广泛的应用场景和更成熟的解决方案。

2025-03-14 12:18:52 357

原创 IoTDB 下载与部署教程:从零开始搭建时序数据库

接下来,你可以开始探索 IoTDB 的更多功能,如数据插入、查询、权限管理等。希望这篇教程能帮助你快速上手 IoTDB,为你的物联网项目提供强大的数据存储和分析支持。点击“新建”,输入 IoTDB 的 bin 目录路径,例如 C:\path\to\apache-iotdb-1.0.0\bin。解压后,你会看到一个名为 apache-iotdb-1.0.0 的目录,这就是 IoTDB 的安装目录。为了方便使用 IoTDB,建议将 IoTDB 的 bin 目录添加到系统的 PATH 环境变量中。

2025-03-13 12:54:43 703

原创 时序数据库选型分析

TimescaleDB 利用 PostgreSQL 的查询优化器,对于复杂的 SQL 查询有较好的支持,但在一些特定的时序查询场景下,可能不如专门设计的时序数据库。在当今数字化时代,大量的时间序列数据不断产生,从工业物联网设备的传感器数据,到金融领域的交易记录,再到互联网应用的用户行为日志等。它针对物联网设备高并发、高频次的数据写入特点,采用了优化的存储结构和写入算法,能够在保证数据一致性的同时,实现高效的数据写入,即使在大规模设备同时上传数据的情况下,也能稳定应对。常见时序数据库概述​。

2025-03-10 09:58:11 385

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除