AVL树(C++实现)

AVL树

概念

 二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度。

一棵AVL树或者空树是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

AVL树不一定需要平衡因子来控制高度差,只不过使用平衡因子是比较方便的一种控制方法
平衡因子=右子树高度-左子树高度

在这里插入图片描述

如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在O(log 2 _2 2N) ,搜索时间复杂度O(log 2 _2 2N)

AVLTree的插入

平衡控制:cur新增,只会影响cur的祖先节点的平衡因子

  1. 更新平衡因子——新增节点到根节点的祖先路径
  2. 出现异常的平衡因子——那么需要旋转处理平衡

在这里插入图片描述

更新平衡因子(5种情况):
①cur== parent->left {parent->bf --}

②cur== parent->right {parent->bf++}

③更新以后,parent->bf == 0,更新结束。此时说明更新前parent->bf 是1或者-1,现在变成成0,说明填上矮的那边,parent所在的子树高度不变

④更新以后,parent->bf = = 1/ -1,继续往上更新。说明更新前parent->bf是0,现在变成1或者-1,我有一边子树变高了,parent所在子树高度变了.

⑤更新以后,parent->bf = = 2 / -2,parent所在子树已经不平衡,需要旋转处理。

代码框架如下:

bool Insert(const pair<K,V> &kv)
{
	if (_root == nullptr)
	{
		_root = new Node(kv);
		return true;
	}

	Node* parent = nullptr;
	Node* cur = _root;
	while (cur)
	{
		if (kv.first > cur->_kv.first)
		{
			parent = cur;
			cur = cur->_right;
		}
		else if (kv.first < cur->_kv.first)
		{
			parent = cur;
			cur = cur->_left;
		}

		else
		{
			return false;
		}
	}

	// 此处走到nullptr,可以插入了
	// 要跟父亲链接起来,我们需要比较一下,链接在左边还是右边
	cur = new Node(kv);
	if (kv.first>parent->_kv.first)
	{
		// 三叉链需要链接起来
		parent->_right = cur;
		cur->_parent = parent;
	}
	else
	{
		parent->_left = cur;
		cur->_parent = parent;
	}

	// 控制平衡
	while (parent)
	{
		if (cur == parent->_left) 
			parent->_bf++;
		else 
			parent->_bf--;


		if (parent->_bf == 0)
		{
			break;
		}
		else if (parent->_bf == 1 || parent->_bf == -1)
		{
			//需要继续往上更新
			//倒着晚上走
			cur = parent;
			parent = parent->_parent;
		}
		else if(parent->_bf == 2 || parent->_bf == -2)
		{
			 //旋转处理
		}
		else 
		{
			//说明插入更新平衡因子之前就有问题了
			assert(false);
		}
	}
	return true;
}

AVLTree的旋转

旋转过程要满足:

  • 保持结构任然是搜索树
  • 控制平衡因子

根据节点插入位置的不同,AVL树的旋转分为四种:

抽象图:
在这里插入图片描述
具象图:
在这里插入图片描述
以此类推。。。

右单旋

  1. 新节点插入较高左子树的左侧——左左:右单旋
    在这里插入图片描述
    a中插入值,a的高度变化,变为h+1,那么就会引发60的平衡因子变为-2,触发旋转

旋转的动作:
①b变成60的左边
②60变成30的右边

旋转的意义:
①这棵树平衡了
②整棵树高度降低了1

在旋转过程中,有以下几种情况需要考虑:
①30节点的右孩子可能存在,也可能不存在

②60可能是根节点,也可能是子树:
 如果是根节点,旋转完成后,要更新根节点
 如果是子树,可能是某个节点的左子树,也可能是右子树

在这里插入图片描述
在这里插入图片描述

void RotateR(Node* parent)
{
	Node* subL = parent->_left;
	Node* subLR = subL->_right;

	parent->_left = subLR;
	if (subLR)
		subLR->_parent = parent;
	

	Node* parentParent = parent->_parent;
	subL->_right = parent;
	parent->_parent = subL;

	if (parent == _root)
	{
		_root = subL;
		_root->_parent = nullptr;
	}
	else
	{
		if (parentParent->_left == parent)
		{
			parentParent->_left = subL;
		}
		else
		{
			parentParent->_right = subL;
		}
		subL->_parent = parentParent;
	}
	parent->_bf = subL->_bf = 0;
}

左单旋

  1. 新节点插入较高右子树的右侧——右右:左单旋
    在这里插入图片描述
    在这里插入图片描述
void RotateL(Node* parent)
{
	Node* subR = parent->_right;
	Node* subRL = subR->_left;

	parent->_right = subRL;
	if (subRL)
	{
		subRL->_parent = parent;
	}

	Node* parentParent = parent->_parent;
	subR->_left = parent;
	parent->_parent = subR;

	if (_root == parent)
	{
		_root = subR;
		subR->_parent = nullptr;
	}
	else
	{
		if (parentParent->_left == parent) 
		{
			parentParent->_left = subR;
		}
		else 
		{
			parentParent->_right = subR;
		}
		subR->_parent = parentParent;
	}

	subR->_bf = parent->_bf = 0;
}

左右双旋

  1. 新节点插入较高左子树的右侧——左右:先左单旋再右单旋
    在这里插入图片描述
    当h= =0的场景:
    在这里插入图片描述
    当h= =1的场景:
    在这里插入图片描述
    ①以30节点为轴点,插入后进行左单旋
    ②以90节点为轴点,进行右单旋
//左右双旋
void RotateLR(Node* parent)
{
	Node* subL = parent->_left;
	Node* subLR = subL->_right;
	int bf = subLR->_bf; 

	//1、以subL为旋转点进行左单旋
	RotateL(subL);

	//2、以parent为旋转点进行右单旋
	RotateR(parent);

	//3、更新平衡因子
	if (bf == 1)
	{
		subLR->_bf = 0;
		subL->_bf = -1;
		parent->_bf = 0;
	}
	else if (bf == -1)
	{
		subLR->_bf = 0;
		subL->_bf = 0;
		parent->_bf = 1;
	}
	else if (bf == 0)
	{
		subLR->_bf = 0;
		subL->_bf = 0;
		parent->_bf = 0;
	}
	else
	{
		assert(false); //在旋转前树的平衡因子就有问题
	}
}

右左双旋

  1. 新节点插入较高右子树的左侧——右左:先右单旋再左单旋
//右左双旋
void RotateRL(Node* parent)
{
	Node* subR = parent->_right;
	Node* subRL = subR->_left;
	int bf = subRL->_bf;

	//1、以subR为轴进行右单旋
	RotateR(subR);

	//2、以parent为轴进行左单旋
	RotateL(parent);

	//3、更新平衡因子
	if (bf == 1)
	{
		subRL->_bf = 0;
		parent->_bf = -1;
		subR->_bf = 0;
	}
	else if (bf == -1)
	{
		subRL->_bf = 0;
		parent->_bf = 0;
		subR->_bf = 1;
	}
	else if (bf == 0)
	{
		subRL->_bf = 0;
		parent->_bf = 0;
		subR->_bf = 0;
	}
	else
	{
		assert(false); //在旋转前树的平衡因子就有问题
	}
}

AVL树的验证

AVL树是在平衡二叉树的基础上,加入平衡因子的限制,因此要验证AVL树,可以分为两步:

  1. 第一步:验证其为二叉搜索树
    如果中序遍历可以得到一个有序的序列,说明其为二叉搜索树
void _InOrder(Node* root)
{
	if (root == nullptr)
		return;
	_InOrder(root->_left);
	cout << root->_kv.first << ":" << root->_kv.second << endl;
	_InOrder(root->_right);
}
void InOrder()
{
	_InOrder(_root);
}
  1. 第二步:验证其为平衡树
    中序有序只能证明是二叉搜索树,要证明二叉树是AVL树还需验证二叉树的平衡性,在该过程中我们顺便检查每个结点当中平衡因子是否正确即可。
  • 每个节点子树高度差的绝对值不超过1(注意节点中没有平衡因子)
  • 节点的平衡因子是否正确
int Height(Node* root)
{
	if (root == nullptr)
		return 0;
	int leftHeight = Height(root->_left);
	int rightHeight = Height(root->_right);

	return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
}
bool IsBalance()
{
	return _IsBalance(_root);
}

bool _IsBalance(Node* root)
{
	if (root == nullptr)
		return true;

	// 对当前树进行检查
	int leftHeight = Height(root->_left);
	int rightHeight = Height(root->_right);

	if (rightHeight - leftHeight != root->_bf)
	{
		cout << root->_kv.first << "这个节点现在是:" << root->_bf << endl;
		cout << root->_kv.first << "这个节点应该是:" << rightHeight - leftHeight << endl;
		return false;
	}

	// 递归去左右子树计算
	return abs(rightHeight - leftHeight) < 2 && _IsBalance(root->_left) && _IsBalance(root->_right);
}

AVL树的删除

删除不是考察的重点,比插入的细节更加多一点。
因为AVL树也是二叉搜索树,可按照二叉搜索树的方式将节点删除,然后再更新平衡因子,只不过与删除不同的是,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置。

AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即log2N 。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
AVL是一种自平衡二叉搜索,它的每个节点存储一个键值对,且每个节点的左子和右子的高度差不超过1。这种平衡特性使得AVL在查找、插入和删除操作方面都有很好的性能表现。 下面是一个简单的AVL的C++实现: ```c++ #include <iostream> using namespace std; // AVL节点 struct Node { int key; int height; Node *left; Node *right; Node(int k) : key(k), height(1), left(NULL), right(NULL) {} }; // 获取节点高度 int height(Node *node) { if (node == NULL) { return 0; } return node->height; } // 获取节点平衡因子 int balanceFactor(Node *node) { if (node == NULL) { return 0; } return height(node->left) - height(node->right); } // 更新节点高度 void updateHeight(Node *node) { node->height = max(height(node->left), height(node->right)) + 1; } // 右旋操作 Node* rightRotate(Node *node) { Node *leftChild = node->left; Node *rightChild = leftChild->right; leftChild->right = node; node->left = rightChild; updateHeight(node); updateHeight(leftChild); return leftChild; } // 左旋操作 Node* leftRotate(Node *node) { Node *rightChild = node->right; Node *leftChild = rightChild->left; rightChild->left = node; node->right = leftChild; updateHeight(node); updateHeight(rightChild); return rightChild; } // 插入节点 Node* insert(Node *node, int key) { if (node == NULL) { return new Node(key); } if (key < node->key) { node->left = insert(node->left, key); } else if (key > node->key) { node->right = insert(node->right, key); } else { return node; } updateHeight(node); int bf = balanceFactor(node); if (bf > 1) { if (balanceFactor(node->left) >= 0) { return rightRotate(node); } else { node->left = leftRotate(node->left); return rightRotate(node); } } else if (bf < -1) { if (balanceFactor(node->right) <= 0) { return leftRotate(node); } else { node->right = rightRotate(node->right); return leftRotate(node); } } return node; } // 中序遍历AVL void inOrder(Node *node) { if (node == NULL) { return; } inOrder(node->left); cout << node->key << " "; inOrder(node->right); } int main() { Node *root = NULL; root = insert(root, 10); root = insert(root, 20); root = insert(root, 30); root = insert(root, 40); root = insert(root, 50); root = insert(root, 25); inOrder(root); cout << endl; return 0; } ``` 在上面的实现中,我们使用了递归插入节点,并在插入节点后更新了节点的高度和平衡因子。当节点的平衡因子大于1或小于-1时,我们进行相应的旋转操作来保持的平衡。最后,我们在main函数中插入一些节点,并进行中序遍历来检查是否正确构建。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值