HBase知识点

watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBAeG1oLXN4aC0xMzE0,size_20,color_FFFFFF,t_70,g_se,x_161、基本概念

 

 

HBase是一种Hadoop数据库,经常被描述为一种稀疏的,分布式的,持久化的,多维有序映射,它基于行键、列键和时间戳建立索引,是一个可以随机访问的存储和检索数据的平台。HBase不限制存储的数据的种类,允许动态的、灵活的数据模型,不用SQL语言,也不强调数据之间的关系。HBase被设计成在一个服务器集群上运行,可以相应地横向扩展。

 

2、HBase使用场景和成功案例

 

互联网搜索问题:爬虫收集网页,存储到BigTable里,MapReduce计算作业扫描全表生成搜索索引,从BigTable中查询搜索结果,展示给用户。

抓取增量数据:例如,抓取监控指标,抓取用户交互数据,遥测技术,定向投放广告等

内容服务

信息交互

3、HBase Shell命令行交互:

 

启动Shell $ hbase shell

 

列出所有的表 hbase > list

 

创建名为mytable的表,含有一个列族hb hbase > create ' mytable' , 'hb'

 

 在‘mytable’表的'first'行中的‘hb:data’列对应的数据单元中插入字节数组‘hello HBase’

 

  hbase > put 'mytable' , 'first' , 'hb:data' , 'hello HBase' 

 

读取mytable表 ‘first’行的内容 hbase > get 'mytable' , 'first' 

 

读取mytable表所有的内容 hbase > scan ‘mytable' 

 

 

 

二、入门

 

1、API

 

和数据操作有关的HBase API有5个,分别是 Get(读),Put(写),Delete(删),Scan(扫描)和Increment(列值递增)

 

2、操作表

 

首先要创建一个configuration对象

 

  Configuration conf = HBaseConfiguration.create();

 

使用eclipse时的话还必须将配置文件添加进来。

  conf.addResource(new Path("E:\\share\\hbase-site.xml"));

 

     conf.addResource(new Path("E:\\share\\core-site.xml"));

 

    conf.addResource(new Path("E:\\share\\hdfs-site.xml"));

 

  使用连接池创建一张表。

 

  HTablePool pool = new HTablePool(conf,1);

  HTableInterface usersTable = pool.getTable("users");

 

3、写操作

 

  用来存储数据的命令是put,往表里存储数据,需要创建Put实例。并制定要加入的行

 

  Put put = new Put(byte[] row) ;

 

  Put的add方法用来添加数据,分别设定列族,限定符以及单元格的指

 

  put.add(byte[] family , byte[] qualifier , byte[] value) ; 

 

  最后提交命令给表

 

  usersTable.put(put);

 

  usersTable.close();

 

  修改数据,只需重新提交一次最新的数据即可。

 

HBase写操作的工作机制:

 

   

 

 

 

 

 

  HBase每次执行写操作都会写入两个地方:预写式日志(write-ahead log,也称HLog)和MemStore(写入缓冲区),以保证数据持久化,只有当这两个地方的变化信息都写入并确认后,才认为写动作完成。MemStore是内存里的写入缓冲区,HBase中数据在永久写入硬盘之前在这里累积,当MemStore填满后,其中的数据会刷写到硬盘,生成一个HFile。

 

4、读操作

 

 创建一个Get命令实例,包含要查询的行

 

Get get = new Get(byte[] row) ;

 

执行addColumn()或addFamily()可以设置限制条件。

 

将get实例提交到表会返回一个包含数据的Result实例,实例中包含行中所有列族的所有列。

 

Result r = usersTable.get(get) ;

 

可以对result实例检索特定的值

 

byte[] b = r.getValue(byte[] family , byte[] qualifier) ;

 

工作机制:

 

 

 

 

 

BlockCache用来保存从HFile中读入内存的频繁访问的数据,避免硬盘读,每个列族都有自己的BlockCache。从HBase中读出一行,首先会检查MemStore等待修改的队列,然后检查BlockCache看包含该行的Block是否最近被访问过,最后访问硬盘上的对应HFile。

 

5、删除操作

 

创建一个Delete实例,指定要删除的行。

 

Delete delete = new Delete(byte[] row) ;

 

可以通过deleteFamily()和deleteColumn()方法指定删除行的一部分。

 

6表扫描操作

 

Scan scan = new Scan() 可以指定起始行和结束行。

 

setStartRow() , setStopRow() , setFilter()方法可以用来限制返回的数据。

 

addColumn()和addFamily()方法还可以指定列和列族。

 

HBase模式的数据模型包括:

 

表:HBase用表来组织数据。

 

行:在表里,数据按行存储,行由行键唯一标识。行键没有数据类型,为字节数组byte[]。

 

列族:行里的数据按照列族分组,列族必须事先定义并且不轻易修改。表中每行拥有相同的列族。

 

列限定符:列族里的数据通过列限定符或列来定位,列限定符不必事先定义。

 

单元:存储在单元里的数据称为单元值,值是字节数组。单元由行键,列族或列限定符一起确定。

 

时间版本:单元值有时间版本,是一个long类型。

 

一个HBase数据坐标的例子:

 

 

 

 

 

HBase可以看做是一个键值数据库。HBase的设计是面向半结构化数据的,数据记录可能包含不一致的列,不确定大小等。

 

 

 

 

 

三、分布式的HBase、HDFS和MapReduce

 

1、分布式模式的HBase

 

HBase将表会切分成小的数据单位叫region,分配到多台服务器。托管region的服务器叫做RegionServer。一般情况下,RgionServer和HDFS DataNode并列配置在同一物理硬件上,RegionServer本质上是HDFS客户端,在上面存储访问数据,HMaster分配region给RegionServer,每个RegionServer托管多个region。

 

 

 

 

 

HBase中的两个特殊的表,-ROOT-和.META.,用来查找各种表的region位置在哪。-ROOT-指向.META.表的region,.META.表指向托管待查找的region的RegionServer。

 

一次客户端查找过程的3层分布式B+树如下图:

 

 

 

 

 

HBase顶层结构图:

 

 

 

 

 

zookeeper负责跟踪region服务器,保存root region的地址。

 

Client负责与zookeeper子集群以及HRegionServer联系。

 

HMaster负责在启动HBase时,把所有的region分配到每个HRegion Server上,也包括-ROOT-和.META.表。

 

HRegionServer负责打开region,并创建对应的HRegion实例。HRegion被打开后,它为每个表的HColumnFamily创建一个Store实例。每个Store实例包含一个或多个StoreFile实例,它们是实际数据存储文件HFile的轻量级封装。每个Store有其对应的一个MemStore,一个HRegionServer共享一个HLog实例。

 

一次基本的流程:

 

a、 客户端通过zookeeper获取含有-ROOT-的region服务器名。

 

b、 通过含有-ROOT-的region服务器查询含有.META.表中对应的region服务器名。

 

c、 查询.META.服务器获取客户端查询的行键数据所在的region服务器名。

 

d、 通过行键数据所在的region服务器获取数据。

 

 

 

HFile结构图:

 

 

 

 

 

Trailer有指向其他块的指针,Index块记录Data和Meta块的偏移量,Data和Meta块存储数据。默认大小是64KB。每个块包含一个Magic头部和一定数量的序列化的KeyValue实例。

 

 

 

KeyValue格式:

 

 

 

 

 

该结构以两个分别表示键长度和值长度的定长数字开始,键包含了行键,列族名和列限定符,时间戳等。

 

 

 

预写日志WAL:

 

每次更新都会写入日志,只有写入成功才会通知客户端操作成功,然后服务器可以按需自由地批量处理或聚合内存中的数据。

 

编辑流在memstore和WAL之间分流的过程:

 

 

 

 

 

处理过程:客户端通过RPC调用将KeyValue对象实例发送到含有匹配region的HRegionServer。接着这些实例被发送到管理相应行的HRegion实例,数据被写入到WAL,然后被放入到实际拥有记录的存储文件的MemStore中。当memstore中的数据达到一定的大小以后,数据会异步地连续写入到文件系统中,WAL能保证这一过程的数据不会丢失。

 

 

 

2、HBase和MapReduce

 

从MapReduce应用访问HBase有3种方式:

 

作业开始时可以用HBase作为数据源,作业结束时可以用HBase接收数据,任务过程中用HBase共享资源。

 

使用HBase作为数据源

阶段map

 

protected void map(ImmutableBytesWritable rowkey,Result result,Context context){

 

};

 

从HBase表中读取的作业以[rowkey:scan result]格式接收[k1,v1]键值对,对应的类型是ImmutableBytesWritable和Result。

 

创建实例扫描表中所有的行

 

Scan scan = new Scan();

 

scan.addColumn(…);

 

接下来在MapReduce中使用Scan实例。

 

TableMapReduceUtil.initTableMapperJob(tablename,scan,map.class,

 

输出键的类型.class,输出值的类型.class,job);

 

使用HBase接收数据

reduce阶段

 

protected void reduce(

 

ImmutableBytesWritable rowkey,Iterable<put>values,Context context){

 

};

 

把reducer填入到作业配置中,

 

TableMapReduceUtil.initTableReducerJob(tablename,reduce.class,job);

 

 

 

3、HBase实现可靠性和可用性

 

HDFS作为底层存储,为集群里的所有RegionServer提供单一命名空间,一个RegionServer读写数据可以为其它所有RegionServer读写。如果一个RegionServer出现故障,任何其他RegionServer都可以从底层文件系统读取数据,基于保存在HDFS里的HFile开始提供服务。接管这个RegionServerz服务的region。

 

 

 

四、优化HBase

 

1、随机读密集型

 

优化方向:高效利用缓存和更好的索引

 

 增加缓存使用的堆的百分

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值