- 博客(6)
- 收藏
- 关注
原创 深度学习--目标检测
深度学习目标检测是指利用深度学习技术来识别图像或视频中的特定目标,如行人、车辆、动物等。它是计算机视觉领域的一个重要研究方向,可以应用于智能交通、安防监控、医学影像分析等领域。深度学习目标检测的一些常见算法包括Faster R-CNN、YOLO、SSD等。这些算法利用深度学习模型来提取图像特征,并通过训练来识别和定位目标。目标检测(Object Detection)是计算机视觉领域的基本任务之一,学术界已有将近二十年的研究历史。
2023-11-16 10:29:25 159 1
原创 深度学习-卷积神经网络
一个卷积神经网络可以有数十层乃至数百层,每层都学习检测图像的不同特征。将不同分辨率的滤波器应用于每个训练图像,每个卷积后图像的输出会成为下一层的输入。滤波器可以从非常简单的特征开始,例如亮度和边缘,然后越来越复杂,直到可以唯一定义目标的特征为止。CNN 由一个输入层、一个输出层和中间的多个隐藏层组成。这些层会执行运算以更改数据,目的是学习特定于数据的特征。卷积层、激活层(即 ReLU 层)和池化层是三种最常见的层。将一组卷积滤波器应用于输入图像,每个滤波器激活图像中的特定特征。
2023-11-06 14:16:46 148
原创 线性回归(Linear Regression)
线性回归(Linear Regression)通过属性的线性组合来进行预测的线性模型,目的是找到一条直线或者一个平面或者更高维的超平面,使得预测值与真实值之间的误差最小化。确定多种变量之间相互依赖的定量关系的一种统计分析方法。
2023-11-02 15:13:18 188 1
原创 深度学习(Deep Learning, DL)
深度学习是由Hinton等人于2006年提出,是机器学习(MachineLearning, ML)的一个新领域。深度学习被引入机器学习使其更接近于最初的目标----人工智能(AI,Artificial Intelligence)。是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对诸如文字、图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。深度学习与机器学习、人工智能的关系人工智能是最早出现的,也是最大、最外侧的同心圆;
2023-11-02 15:02:07 72 1
原创 机器学习菜鸟总结
总结起来,人工智能的发展经历了如下若干阶段,从早期的逻辑推理,到中期的专家系统,这些科研进步确实使我们离机器的智能有点接近了,但还有一大段距离。在下面的算法中,训练数据都是不含标签的,而算法的目的则是通过训练,推测出这些数据的标签。深度学习属于机器学习的子类。
2023-11-01 14:43:08 53 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人