- 绪论
1.1课题背景和意义:的
地对空防御作战主要指地面部队通过使用武器装备尽可能地破坏或干扰敌方飞行武器的攻击,从而保护我方资产、人员和装备。为了尽可能减少我方资产损失,需要进行合理的兵力部署。兵力的部署包括军队人员和武器装备数量的部署,其中武器装备是军事力量的重要组成部分,是完成作战任务的物质基础,这就需要地面指挥部队分析己方作战兵力的结构和特点,研究武器部署点及该部署点武器类型、武器数量等部署方案。
近几年来,随着信息技术的快速发展,战争形态正由过去的机械化战争向信息化战争演进,武器装备在战争中的重要性也在不断上升。武器装备部署就是指将武器装备系统中的各个组成部分,按照一定的策略和计划,安排在合适的位置以发挥其最大效能的过程。做好武器装备的部署不仅可提高作战效果减少人员伤亡和损失,还可以提高战略决策的准确性增强国家安全防卫能力。而随着军事武器的智能化、协同化、网络化的发展,这致使地对空防御作战方式呈现出大规模、多目标、多样式,这无疑给地对空防御作战带来了巨大挑战。
因此,在地对空防御作战背景下,针对作战类型的多样化对地对空防御作战中武器的位置、根据被保护目标的重要程度部署数量和投放武器的类型等进行研究是必要的。
1.2兵力部署问题国内外研究现状:
关于兵力部署问题,一般从优化理论或博弈理论等角度进行建模分析。
关于基于优化理论对兵力部署问题的研究。褚凯轩、常天庆[1]采用双层迭代优化模型,基于人工蜂群算法求解模型,求解最优兵力转移比例。樊辉锦、巫银花[2]以航母编队的反无人机蜂群作战兵力部署为研究对象,以防空警戒哨舰和舰载电子战飞机对蜂群打击为约束条件,并通过只能优化算法粒子群算法对算法,寻求最优的兵力部署解空间。于威 、侯学隆[3]以实例抗击美巡航导弹为问题背景,建立了导弹防控部署优化模型,并通过线性规划和遗传算法进行求解,搜寻最优部署方案。Wen Sun和Zenyang Cao[4]基于双嵌套优化架构对战争中复杂问题进行优化部署,实现了防御D的两倍覆盖,从而实现了所有来袭弹道导弹的覆盖,为研究多约束优化问题提供参考。
优化模型关注的是单一决策者在其控制下寻求最优解的问题,无法考虑不同主体之间的竞争合作,而博弈模型关注多个决策者之间的互动和最优策略的寻找。因此也有一些研究者从博弈论的角度对作战中的部署进行研究。芦方旭、米志超【5】对战争中所要使用的武器无人机进行部署,采用势博弈的方式构建无人机部署模型,采用超启发式灰狼算法不断搜寻解空间,并进行实例仿真分析。从博弈的角度研究兵力部署问题的学术研究并不多,但博弈在其他部署方面的研究不占少数。乐艺[6]基于博弈论研究云计算部署,算法通过进化博弈中的复制动态机制确保得到的均衡解是具有渐近稳定性,寻找进化稳定解,并验证其解可以收敛在均衡解上,得到云环境下的部署。姜广胜等[7]基于博弈论构建不完全信息下的动态目标分配模型,建立攻防支付矩阵,利用遗传算法求解不完全信息条件下的纳什均衡,得到动态目标的合理分配部署。韩 晨、刘爱军等【8】研究了在干扰条件下基于博弈论的无人机群部署与组网的方案,并建立了无人机拥塞博弈模型并结合联盟建立模型,采用分布式算法求解模型的纳什均衡。Qilin Feng、Hai Gai[9]提出一种贝叶斯静态博弈论方法优化城市规模的防御资源部署,以中国某城市五家化工厂为例,使用先验概率分布描述每种攻击者发起攻击的可能性,得到了一种类型和多种类型攻击者时的防御部署策略。
综上看来,利用博弈模型对兵力部署问题的研究相对较少,所以在本文中,我将采取非合作博弈模型对所要研究的问题建模并求解。
1.3 遗传算法的国内外研究现状
遗传算法是受自然选择过程启发的智能算法,属于更大的进化算法。在此之前,许多专家学者都运用到了遗传算法求解不同问题。
赵杰、刘锋等【10】利用遗传算法以提高磁共振磁场的均匀性,从被动的匀场数学模型的角度出发,利用遗传算法的的选择交叉和变异,并通过判断迭代次数终止算法的操作,求解出该问题模型的初始稳定的解。朱耀旭、包乾宗【11】在地震数据的研究中,在提取子波和Q值估计中由于计算量过大引入遗传算法简化计算量,以目标函数为适应度函数,采用二进制编码进行Q值估计。王红春,冷 婧【12】在研究产品选址问题中,建立了以选址成本最小化为目标的选址模型,利用遗传算法求解最优问题,并采取二进制编码均匀交叉等方式求解两处最小成本选址方案。高琦、梁化典【13】建立了列车运行中的动力学方程,定义列车运行过程的约束条件,利用遗传算法的模型对列车在运行期间的能耗在不同区间分配和区间最优巡航速度进行求解,通过遗传算法中的交叉变异等过程,得到了节能效果最优的驾驶速度。张 朝、谭 勇【14】在做建筑能耗预测模型的研究中,针对人员相对来说集中的高校建筑的能耗进行了分析,并通过收集校园内大量建筑能耗的数据,同时采用遗传算法优化 BP 和 LSTM 建筑能耗预测模型。石依慧、朱杰江【15】在研究钢框架—BRB结构优化问题中,利用遗传算法对钢框架—BRB结构进行整体优化,以造价最低为目标即适应度函数,引入 DCPM 约束处理法,提升了算法对约束条件的处理能力。
在遗传算法的发展中,利用遗传算法对博弈模型求解较为少见,因此在本文的研究中,我们将采取遗传算法对问题的兵力部署非合作博弈模型进行求解研究。
1.4本文的主要研究内容
本文就基于博弈的地对空防御作战的兵力部署问题展开讨论,将作战地进行战区区域的划分,根据有限的兵力在作战中提前部署规划,使得有限的兵力合理的部署给各个作战区域,使每个作战区域都得到合理有效的保护,在模型建立过程中考虑不同类型的战机对战机的作战效益指数进行计算区分战机类型的区别。
本文共分为六章,具体内容如下:
- 先介绍了本课题要研究的背景和意义,然后通过国内外文献的综述对兵力部署问题从优化和博弈理论的国内外研究现状进行阐述。并提出在本文中要研究的内容和思路。
- 对行文所要用到的相关知识进行相关原理介绍,主要介绍博弈与非合作博弈基本理念,并对非合作博弈展开说明其数学表达,对本文所用遗传算法进行简要阐述,为后文奠定理论基础。
- 建立地对空防御作战兵力部署非合作博弈模型,对所要建立的模型展开问题描述并进行必要的符号说明,基于不用种型号战机的探测能力,火力系数等因数提出对数法计算公式便于后续对不同种类战机的作战效益计算。
- 对第三章的非合作博弈模型设计算法求解,本文采用遗传算法求解,在本章中主要设计遗传算法对兵力部署问题求解,并对近似纳什均衡做出必要解释,对算法的具体步骤细化说明并给出算法流程图,未后续仿真做基础。
- 针对上一章节的算法设计,给出具体的实例描述,收集战机数据并计算,利用matlab实现算法的仿真得到具体结果,并对结果进行分析。
- 总结全文,提出不足与展望,并介绍下一步的研究重点。
- 相关理论
本章主要论述本文中要使用到的非合作博弈以及遗传算法的相关理论,为后续问题的研究打下基础。
2.1博弈与非合作博弈
博弈论【16】主要是利益冲突背景下的多个独立博弈主体的决策问题,其核心就是基于他方信息作出最会利己的反应,最终实现利益分配的相对均衡。而博弈并非本世纪出现的一个新鲜名词,早在春秋战国时期我国便出现了博弈思想的萌芽,形成了早期蕴含博弈思想的巨著——《孙子兵法》。进入近代,西方国家在博弈论相关理论上投入大量研究精力与人力。而进入二十世纪中期,纳什发表了多篇关键性论文,给出了系统性的、公理化的非合作博弈理论规范,并且采用纯数学推理给出 n 人非合作博弈均衡的存在性要求,奠定了其的应用价值。直到今日,博弈论已经得到了极大的发展,获得了许多工程领域的独爱,逐渐成为现代数学的一个重要分支。
通常情况下,博弈的问题主要包括四大基本构成元素和两大隐含假设。四大基本构成元素分别为:博弈的局中人、策略集合、收益(支付)函数以及博弈均衡。其中,博弈的局中人即参与博弈的个体,数学表达式
;策略集则为博弈的局中人针对他方信息所做出的策略
的集合,即
;收益函数是用来评估博弈决策过程中的获利收益情况,并以此作为调整下一轮迭代决策的重要信息,则收益函数集合的数学表达形式可以表示为:
;而博弈的均衡为博弈理论指导下形成稳定的策略以及收益态势,即简单来说是博弈问题的解,可以表示为
; 从而,一个博弈的完整表达即可表示为:
。两大隐含假设为:理性假设和信息共享假设;理性假设强调的是形成博弈局势的局中人存在趋利性,是理性的;信息共享旨在强调博弈局中人共同所有一定数量的信息,在一定程度上知道对方的资源和反应的趋势。
非合作博弈理论【17】为博弈论中最先被挖掘出来的,是整个理论的基石。非合作博弈指的是在当前策略环境下,非合作框架把所有人的行动都当成是个别人的行动。它主要强调的是一个人进行的自主的决策,而与此策略环境中其他人的行动无关。通常就是我们字面上看到的博弈的意思。博弈并不只包含了冲突元素,而往往在很多情况下,既包含了冲突元素,也包含了合作元素。即冲突和合作是重叠的。下述将对非合作博弈论的表达形式展开叙述。
2.2非合作博弈的数学表述
非合作博弈主要有两种典型的纯数学式规范表达形式,这两种形式分别是标准(策略)型博弈、混合策略博弈。前者与后者的区别在与决策是否具有同时性,分别适用于静态、动态博弈【18】。下面分别介绍这两类博弈的数学表达形式。
标准型博弈,该种博弈包含三个组分部分:
(1)博弈的局中人:
;
(2)博弈的局中人i 的策略,并且
,策略的集合为
;
(3)策略的集合
其对应的收益可以表示为
;
由此,总结该标准型博弈的数学形式可以表示为:
。
混合策略博弈,同标准的博弈,该类博弈也包含三个必备组分:
(1)博弈的局中人:
;
(2)博弈局中人i 的混合策略,并且 ,
,其策略的组合
;
(3)服从概率的密度分布规律下的期望收益可以如下表示:
混合型博弈的数学形式为
。
2.3非合作博弈纳什均衡与求解
非合作博弈的纳什均衡由约翰提出,并为学界和工程应用达成了统一并保存至今。其定理如下,对于博弈:
或者
,
存在策略的反应集合
或者
,满足
下:
即
或
是博弈的纳什均衡,且
时,
。
2.4遗传算法介绍
遗传算法的基本原理源于达尔文的自然选择和遗传学的基本概念。在遗传算法中,解决方案的每个实例被视为一个“个体”,整个解决方案空间形成一个“种群”。每个个体通过一串“基因”来表示,这些基因编码了解决方案的具体参数。遗传算法通过迭代过程,不断改进种群的质量,逼近最优解。其核心步骤包括选择(Selection)、交叉(Crossover)和突变(Mutation)【19】。
对遗传算法的进一步推导,考虑一个简化的遗传算法模型,其适应度函数f(x)用于评估每一个个体的性能,其中x是一个编码了个体特征的向量。算法的目标是最大化适应度函数。遗传算法的一次迭代可以表示为以下步骤:
首先选择:个体被选择用于繁殖的概率与它的适应度成正比。假设我们设
是第i个个体的被选择的概率,则:
,
其中
为第i个个体的适应度,N表示种群中个体的总数。
其次交叉:选择的个体通过交叉操作生成新的后代。假设交叉点为g,并考虑两个个体
和
,后代
可以表示如下:
最后变异:以小的概率
修改新生个体的某些基因,引入变异,增加了种群的多样性,对于基因
,突变的操作可以如下表示;
其中,
表示随机的变化量,
表示突变率。
通过不断地重复以上的这些步骤,遗传算法净多很多次的迭代后就能够逐步的改进解决问题的质量,一步一步接近最优解,其中,每一代的适应度函数通常都会提高,表明算法在解决具体问题上是有效的。
其遗传算法的基本实现步骤如下:
Step 1:初始化种群。生成初始种群。
Step2:评估适应度。为每个个体计算适应度,适应度高的个体更有可能被选中用于生成下一代。
Step3:选择过程。根据个体的适应度选择若干优秀个体,为交叉和变异做准备。
Step4:交叉操作。通过某种方式(如单点交叉)将选择的个体配对,交换它们的部分基因。
Step5:变异操作。以较低的概率修改个体的某些基因,以增加种群的遗传多样性。
Step6:生成新种群:从上一代的优秀个体和新生成的个体中,形成新的种群。
Step7:终止条件:如果达到预设的终止条件(如最大迭代次数或适应度阈值),则停止迭代
2.5本章小结
本章介绍了本篇论文中要使用到的相关原理。首先介绍了博弈以及非合作博弈的相关概念,并对非合作博弈模型的基本数学表达展开介绍。在此基础上介绍说明非合作博弈的求解即纳什均衡的基本理论。然后简要的介绍了遗传算法的基本思想原理和算法的基本步骤。为后续建模奠定了一定的理论基础。
- 兵力部署博弈模型的建立
3.1问题描述与假设
3.1.1问题描述
在地对空防御作战中,需要考虑诸多问题,如战略要地,部署的兵力和武器数量等,在本文中主要考虑我方自己的兵力部署问题,在作战前提前做好初步的武器部署,确保在实际战争中尽可能的获取战争的胜利,在实际战争中,通常会存在作战区域的划分,如将南海划分为东西南北中沙群岛五大作战区域,本文就作战区域和武器部署展开讨论,根据战区数目的划分和拥有战机的种类和数量进行部署,对于每个战区来说都想要尽可能的使用作战指数高的战机来使自己得到更有效的防御,而对整体作战来说希望达到整体区域都得到有效的保护,这就需要指挥者利用有限的武器装备合理的分配给各战争区域。
就本问题展开模型假设,假设我方拥有a种型号的和n个作战区域,其中每种型号的战机分别有
,
,…
架,那么本文研究的兵力部署问题可以用如下图示表示:
即根据作战区域的划分,部署不同机型的战机和战机数量,使得我方作战区域都被合理均衡的有效保护,部署策略的不同,得到的部署收益就有所不同。这一过程存在博弈,因此在本问题的研究中将建立非合作博弈模型求解问题。
3.1.2模型假设
在本文中,兵力部署采用非合作博弈模型,并在以下假设条件下进行:
(1)从博弈的角度,博弈的局中人在不知道他方部署的策略的情况下选择各自部署策略,因此不论是否同时选择,都假设是同时做出的决策。
(2)作战前,每个局中人都已知有限的战机数量和类型。
(3)根据作战的实际场地进行战区的划分,本文对每个战区没有偏袒,即各战区的权重相同。
3.2战机作战效益的综合指数评价
对战机作战效益的分析是为了方便部署合理的战机分配给各个战区达到作战之前部署的合理分配,本文采用对数分析法对战机的作战效益进行描述,考虑战机的机动性,火力探测目标的能力,生存能力,航程及电子信息对抗的能力进行研究【20】。针对这6个重要的作战指标,其计算方法如下:
其中B表示战机的机动性的参数,A表示火力系数,一般的,战机都装有导弹和航炮,则
表示导弹的火力系数,
表示航炮的火力系数,E表示探测能力,
表示生存能力系数,
表示航程系数,
表示对抗能力系数。
- 战机的机动性
战机的机动性是由战机最大过载
和爬升率决定的,其计算公式为:
- 火力探测能力
火力探测能力系数用A表示,其中战机可能装载航炮和导弹,则火力的探测能力系数就由航炮的火力系数和导弹的火力系数构成,表示为:
其中
表示航炮的火力系数,
表示导弹的火力系数。
其中航炮的火力系数可以计算为:
r 为每分钟发射率;
为弹丸初速;
为弹丸重量;R为航炮的口径;n 为航炮的配置数量。
导弹的火力系数可以计算为:
其中,
为最大实际有效射程;
为允许发射的高度差;
为导弹最大过载量。
- 雷达的探测能力
雷达的探测能力可以计算表示为;
其中,
表示为发现的最大距离,
跟踪的目标数量,
为允许攻击的目标数量。
- 生存能力
生存能力可以计算表示为:
其中,
为战机的机翼长,
为战机的全长。
- 航程系数
航程系数可以计算表示为:
其中,Q示战机存油的最大的航行长度。
- 对抗能力
本文考虑的对抗能力主要考虑电子信息的对抗能力,实际作战战机的对抗能力可根据战机的装备构成决定,如装有全向雷达告警系统的战机的电子信息对抗系数为1.05等。
3.3符号说明
在接下来所建立的兵力部署非合作博弈模型及求解中,需用到一下变量:
符号 | 描述 |
G | 表示非合作博弈 |
N | 博弈模型中的局中人 |
| 第j种型号的战机数量 |
| 战区i的部署的策略 |
| 战区i部署的第j种型号的战机数量 |
| 非合作博弈中的支付函数 |
| 适应度函数 |
| 遗传算法的交叉率 |
| 遗传算法的变异率 |
| 定义的GA的最大生成 |
k | 迭代次数 |
3.4基于地对空防御作战博弈模型的建立
根据博弈模型,我们可知博弈模型具有三要素:局中人N、策略为S、支付函数为U,建立兵力部署非合作博弈模型,并将博弈模型转化为优化问题求解近似纳什均衡,得到均衡合理的部署策略组合。
(1)定义局中人
在此模型中,局中人设为n个战区,局中人表示为N={1,2,3…,n}其中n表示战区n。
(2)定义局中人策略
每个战区作为局中人,去选择战机种类和数量让自己得到有效的保护,每个局中人可以选择的战机种类有a种,则战机的中数量可以表示为:
,其中M表示战机的总数量,
表示第j种型号的战机有
架,则M≥n,每个战区部署的战机总数为I,则
。
则每个战区的部署的策略
可以表示为
。
其中,
表示战区i的部署策略,
表示在战区i部署的第j种型号的战机一共部署了
架。并且满足
。对于每个战区而言,可选择的策略空间共有
种组合方式。则各个战区的部署策略构成策略集S,则策略集可以表示为:
。
这里我们指出,如果在实际作战中作战这拥有的兵器数量巨大,如果以单架战机进行武器部署单元会使整个作战策略集过于庞大,增加建模和计算的难度,如果在实际问题中运用本模型可以考虑将战机进行分组编队等形式,如同种型号4架战机为一组行成一个部署单元,这样就减少了策略集的容量,减轻了建模的求解过程,具体战役应根据具体兵力所有量进行分析和有效合理分组。
- 定义支付函数
假设局中人战区i选择了策略
,策略的表达参照式(1),则战区i的作战收益为所选择的战机型号的作战指数与此种型号战机数量的乘积求和,
则战区作战的支付效用函数为:
其中,
表示第j种型号的战机在战区i的部署数量,
表示第j种型号的战机的作战效益指数。
因为局中人各战区都想要争得作战效益指数高的战机去使得自身得到最有效的保护,则各战区之间存在博弈,至此,非合作博弈模型构建完成。
3.5 本章小节
本章建立了基于地对空防御作战兵力部署的非合作博弈模型。首先,在本章中对所要研究的兵力部署问题进行了具体的描述,并给出了合理的假设,在此基础上,对不同战机的作战效益利用对数法进行计算,主要考虑战机的生存能力,活力系数,他么能力等6种因素展开讨论。基于有限的兵力部署各个战区建立非合作博弈模型,并对模型中及接下来的算法设计中所用到的变量符号做解释说明。
在本章建立的兵力部署非合作博弈模型的基础上,下一章将设计具体算法求解本章模型,拟定采取遗传算法对本章模型进行求解。
- 基于遗传算法对兵力部署博弈模型求解
4.1纳什均衡
纳什均衡要求所有人都没有偏离当前策略的动机。纳什均衡证明了n个人的有限博弈一定存在纳什均衡,但是即使对于两个人的情形,如果每个人的策略空间很大,均衡的求解还是会很困难。在兵力部署问题中就存在策略空间大且可能不存在绝对的均衡,如果放松求解的条件,寻求一个策略使得每个人偏离增加的收益不超过一个常数,则这个策略叫做一个近似纳什均衡(Approximate Nash Equilibria)。 在本问题背景下,没有单个战区能够通过改变自己的部署策略而单独获得更多的保护或效益,考虑到其他战区的策略选择。具体来说,求得近似纳什均衡可以提供以下信息,每个战区应该部署哪些型号的战机以及每种型号的战机数量。均衡状态下的保护水平,每个战区在均衡状态下可以获得的保护水平,这可以作为评估和比较不同部署方案的依据。决策支持,为指挥者提供决策支持,帮助他们在多种可能的部署方案中选择最优或近似最优的方案。
在实际应用中,由于策略集可能非常庞大,用传统的划线法等求解精确的纳什均衡可能非常困难或不可行。因此,使用算法(如遗传算法)来求解近似纳什均衡成为一种实用的方法。这种方法可以在可接受的计算资源和时间内,找到一个接近均衡的解决方案,对本问题的求解采用求取近似的纳什均衡,使得每个战区都得到均衡有效的兵力部署,即求得在有限兵力和一定数量的战区的前提下,得到兵力部署博弈模型的近似纳什均衡的兵力分配部署,求解该问题本文将采取遗传算法求解。
4.2遗传算法的介绍
遗传算法(Genetic Algorithm, GA)是一种启发式搜索算法,它模仿了自然选择的过程,通过选择、交叉(或称为重组)、变异等操作在候选解的种群中进行搜索,以找到最优或近似最优解。遗传算法因其简单、鲁棒性强、易于实现等优点,在许多领域都有应用,关于地对空防御作战中的兵力部署问题,涉及到兵力部署模型的建立和博弈模型的构建。尤其是在策略集的数目非常庞大时,传统的划线法可能不可行,而遗传算法可以有效地搜索解空间,其一般算法步骤包括编码,初始化,适应度评估,选择,交叉,变异,新一代种群,终止条件,输出。
4.4算法设计
- 染色体编码:在遗传算法中,战机数量的编码方式取决于如何将兵力部署方案表示为染色体,常用的染色体编码方式有二进制编码,实数编码,集合编码等形式,为了更好的表示,我将采取直接编码的方式,在直接编码中,按照有n个战区,a种类型进行划分,一共是
个基因为一个染色体,其中每a个基因为一个战区,a个基因分别代表每种类型战机的数量。
如假设有四个战区,共有三种型号的战机,其数量分别为2,2,3架,则直接编码可以如下表示:
1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 |
图1
如图1所示表示为该条染色体由12个基因组成,每三个基因表示一个战区,共有四个战区,每个战区内的三个基因依此代表每种型号的战机部署数量,如前三个基因可以表示为在战区1部署第一种型号的战机共1架,第二种型号的战机共1架。同时在编码部署中满足每个战区部署战机数量大于等于1,每种类型战机部署数量不得超过战机总数。
初始化种群:(按照算法步骤那么写)为了保证随机输出一组兵力部署方案生成染色体行成初始种群为可行的,将进行如下操作:
Step1:确定基因数量为
个,并先赋值为0.
Stept2:对战机进行分配,战机总数为M架,战区数量为n,不考虑型号,依此选择每一架战机,分配数量为1,分配给每个战区,每一个战区分配的概率均等,直到所有战机分配完。
Stept3:根据随机分配行成初始化种群,在本文中随机生成20个初始种群,即20条染色体。
如上的例子来说,战区总数为4,战机总数为7架,将7架战机,依次选择每一架战机部署进各个战区,可以用如下图示表示其中一个初始种群:
1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |
图2
(2)适应度函数:众所周知,适应度函数的设计是遗传算法的关键,通过计算它的适应度的值,可以对种群中的所有个体进行评估,并为每一代的遗传操作提供标准。因此,现在我们要做的重要的事情就是设计一个适合兵力部署的适应度函数。
其中,
表示第k次迭代中当前染色体的战区i的收益值,
表示为第k-1次迭代中所有染色体中的战区i的最大收益值,即
。
而设计此适应度函数则是为了求解本文研究的兵力部署博弈模型的近似纳什均衡,即纳什均衡是指每个战区都希望调整策略使最大化自身收益,根据这一特性,设计本适应度函数考虑每次迭代后各战区收益变化值,判断在策略改变的情况下收益值的变化,从而选取最优部署策略即纳什均衡。
(3)遗传操作
1.选择操作:(怎么选择的)根据适应度函数选择适应度函数值大的染色体,用于后续的交叉和变异操作,对计算种群得到最大收益。
2.交叉操作:在本文中,交叉方式为单点交叉,即在父代染色体中选择两个个体,每个个体被选择的几率均等,再从被选择的每一条染色体
个基因中随机挑选一组基因即随机选取同一个战区,并从选取的a个基因中随机挑选一个基因即挑选某一型号的战机,每种型号的战机被选择概率均等,随机对挑选的两组基因中选择相同型号的战机进行交换战机数量,产生新的兵力部署方案。
如上例所示,随机挑选两条染色体即两种部署方案,在同一战区对同种型号战机之间数量进行交叉互换,可以用如下图示表示:
图3
即如图3所示,将两条染色体的战区一第二种类型的战机数量进行交叉互换,得到新的部署方案。
交叉修复策略:在交叉过程后,会得到新的染色体,即新的部署策略,对新的部署策略进行判断,若交叉后即改变此型号战机的部署数量,如交叉后部署进站区此型号战机总数量
大于战机数量总数
,则要进行策略修复,将随机选取其他战区该种型号的战机数量减少
架。如若增减后战区总战机数量小于1或为负值则重新交叉。
3.变异操作:随机改变染色体中的某些基因,以引入新的变异,本文中的变异操作采取均匀变异,由于战机的数量较少,通过rand(1,2)随机改变染色体中的某一个基因进行改变,随机的增加或者减少基因数量,其中变异战机数量依据:变异数量决定解的质量,变异范围越小,解的质量越高。可根据战机数量多少,合理选择较小的或较大的战机变异数量有利于解的生成。本文中的变异策略为基本位变异,对染色体中的每个基因,根据变异率决定是否进行变异。如果决定变异,随机选择一个新的值赋给该基因。变异操作涉及对个体染色体的随机改变。在遗传算法的每次迭代中,根据预定的变异率,对选中的个体执行变异操作,变异率的取值为(0,1)之间的一个值,表达为基因变异概率的大小,为了尽快达到收敛效率,变异率采取的值为0.8。
依然以上述例子为例,选择其中一条染色体中的一个基因位进行变异,示意图如下:
图4
如图4所示,随机选择一条染色体中的一个基因位,如选择第一个战区中第二种型号的战机数进行变异,随机增加数量1,得到新的部署策略
变异修复策略:在变异后对新产生的染色体仍要进行策略的修复,在随机一个战区某种型号战机进行了随机的增加后减少数量后,同时随机选取其他战区中相同型号的战机数相应减少或增加相同的数量确保变异后的策略为可行的,操作结束后进行判断每一个战区是否战机总数大于等于1,每种型号战机总数是否超过此型号战机总数,每种战机的部署是否为负数,如若都满足则输出新的部署策略,若不符合的重新变异。在本例子中在战区1将第二种型号战机数增加1的同时随机选取战区2的第二种战机数量减少1。
4.5 GA算法的基本流程如下:
Step1:初始化种群。设定种群数,即染色体数目,以及基因数目,由战区数n,战机种类数a,基因数为n×a,以及每种类型战机的六个作战参数,计算各个染色体作战效益,得到最大作战收益染色体的索引值。
Step2:选择父代。利用轮盘赌的方式挑选父代,基于适应度来选择合适的父代即合适的染色体来选择战机分配方案。
Step3:交叉产生后代。采用单点交叉方案,对两个染色体战区战机进行交叉操作。交叉率为
。
Step4:变异。分别对染色体即战区分配方案中的基因进行变异操作,变异率为
,随机增加或者减少,之后进行变异可行解判断,依据每个类型战机数目最大数目进行判定。
Step5:替换种群中的个体。采用精英策略替换种群,合并父代与子代种群,计算适应度即各个染色体收益,选择前20名作为新一代种群。
Step6:如果满足停止条件,即迭代次数达到最大迭代次数,输出最优战机分配方案以及满足纳什均衡条件下的战机各战区分配策略。
则具体流程可用以下图解展示:
这个流程图老师说 遗传算法参数设置这话没说完,参数是什么要写出来
下一步初始化应该是两部分 初始化算法 和初始化问题的相关参数,然后要初始化染色体初始化种群,在接下来计算种群中每个染色体的适应度进行评估 然后在进行选择操作,因为前面已经具体介绍了怎么选择,流程图就可以写根据哪个公式来选择。然后进行遗传变异
然后老师说终止条件应该有两个,根据这个参考文献这个来对照看
4.6 本章小结
在本章节中,对上一章节的非合作博弈模型进行算法设计,首先将非合作博弈所求解的纳什均衡与本算法进行融合,由于实际战争中的一些复杂因素,本问题将采取求解近似纳什均衡,并对近似纳什均衡做出解释。在此基础上对使用遗传算法求解本问题做出解释,建立适应度函数,对算法设计的各个流程分别展开说明,并用具体例子做出图示和解释,将算法融入本文要研究的实际问题中,写出算法的具体流程并画出本问题的算法流程图。
在本章算法设计的基础上,下一章节将通过具体的实力实现本算法的仿真,本章节为下一章节的算法实现打下基础。
- 算法仿真
5.1实例描述
以南海为例,将南海划分为东沙群岛,南沙群岛,西沙群岛,北沙群岛四个战区,其中我方拥有的战机类型有5种,包括,3架歼-11B,2架歼-10A,1架歼轰-7,3架苏-22,2架苏-30。在此问题背景下展开兵力部署模型的仿真实现,基于matlab软件编程,得到结构,其中关于战机数据如下所示:
参数数据
战机类型 | 翼长 (米) | 全长 (m) | 航程 (km) | 最大过载 (G) | 爬升率 (m/s) |
歼-11B | 14.70 | 21.90 | 4390 | 9 | 300 |
歼-10A | 9.75 | 16.43 | 1850 | 9 | 200 |
歼轰-7 | 12.70 | 22.30 | 3650 | 7.5 | 200 |
苏-22 | 13.68 | 19.02 | 2300 | 7 | 180 |
苏-30 | 14.70 | 21.94 | 4000 | 8.5 | 230 |
探测能力数据
机型 | 最大跟踪距离(km) | 同时跟踪目标数 | 同时攻击目标数 | 探测能力系数 | |
JL-10A | 歼-11B 歼-10A 歼轰-7 | 80 | 15 | 6 | 667.90 |
N001 | 苏-22 | 100 | 10 | 2 | 967.99 |
N011M | 苏-30 | 60 | 15 | 4 | 521.55 |
航炮的火力参数数据
机型 | 射速 (r/min) | 初速 (m/s) | 弹丸重量(G) | 口径 (mm) | 火力系数 | |
Gsh-30-1 | 歼-11B 苏-30 | 1800 | 900 | 39 | 30 | 0.12 |
Gsh-23L | 歼-10A | 3600 | 715 | 200 | 23 | 0.59 |
NR-30 | 苏-22 | 1000 | 780 | 410 | 30 | 0.51 |
空空导弹火力参数
射程 (km) | 射高 (km) | 杀伤率 | 最大过载(G) | 火力参数 | ||
PL-12 | 100 | 21 | 75% | 38 | 1710 | |
PL-8 | 15 | 20 | 70% | 35 | 210 | |
R-73 | 35 | 20 | 60% | 12 | 144 | |
R-M13 | 8 | 4 | 70% | 11 | 7.04 |
各战机携带武器类型及数量数据
携带武器数量 | Gsh-30-1 | Gsh-23L | NR-30 | PL-12 | PL-8 | R-73 | R-M13 |
歼-11B | 1 | 0 | 0 | 4 | 2 | 0 | 0 |
歼-10A | 0 | 6 | 0 | 0 | 2 | 0 | 0 |
歼轰-7 | 0 | 1 | 0 | 2 | 4 | 0 | 0 |
苏-22 | 0 | 0 | 2 | 0 | 0 | 0 | 4 |
苏-30 | 1 | 0 | 0 | 0 | 0 | 6 | 0 |
用对数法计算战机作战效益指数
机型 | 歼-11B | 歼-10A | 歼轰-7 | 苏-22 | 苏-30 |
机动性参数C | 18.00 | 15.00 | 13.50 | 12.40 | 15.40 |
火力参数 | 3717.06 | 3720.48 | 800.67 | 15.10 | 352.85 |
探测能力参数E | 667.99 | 667.99 | 667.99 | 967.99 | 521.55 |
生存能力 | 0.95 | 1 | 0.96 | 1.02 | 0.95 |
航程参数 | 1.33 | 1.07 | 1.27 | 1.13 | 1.30 |
电子对抗能力 | 1.2 | 1.2 | 1.2 | 1.15 | 1.2 |
作战效益指数 | 26.71 | 22.39 | 23.11 | 15.34 | 22.02 |
- 总结与展望
参考文献
参考文献:
[1]褚凯轩,常天庆,孔德鹏.基于Jackson网络的地面分队防御作战兵力部署方法[J].控制与决策,2023,38(1):219-227
[2]樊辉锦,巫银花,毕月,等.航母编队反无人机蜂群作战兵力部署模型及优化[J].火力与指挥控制,2023,48(06):55-61+69.
[3]于威,侯学隆.要地区域防空兵力优化部署问题研究[J].舰船电子工程,2022,42(12):37-39.
[4] Wen Sun,Zeyang Cao,Gang Wang,Yafei Song.An Optimized Double-Nested Anti-Missile Force Deployment Based on the Deep Kuhn–Munkres Algorithm[J]. Air Defense and Antimissile School, Air Force Engineering University, Xi’an 710051
[5]芦方旭,米志超,马骏,等.基于势博弈的多QoS无人机基站空间优化部署[J].航空学报,2022,43(09):678-687.
[6]乐艺.一种基于进化博弈理论的虚拟机部署算法[J].计算机应用与软件,2021,038(7):106-112
[7]姜广胜,史宪铭,陈静,赵美,刘昊邦.基于不完全信息博弈的动态武器目标分配[J].指挥控制与仿真,2022,44(3):20-24
[8]韩晨,刘爱军,安康,等.干扰环境下基于博弈论的无人机群部署与组网方法[J].电子与信息学报,2022,44(03):860-870.
[9] Qilin Feng, Hao Cai , Zhilong Chen.Using game theory to optimize the allocation of defensive resources on a city scale to protect chemical facilities against multiple types of attackers[J].PLA University of Science and Technology, Nanjing 210014
[10]赵杰,刘锋,夏灵,等.基于遗传算法-序列二次规划的磁共振被动匀场优化方法[J].浙江大学学报(工学版),2024,58(06):1305-1314.
[11]朱耀旭,包乾宗.应用遗传算法估计非稳态地震数据的混合相位子波及Q值[J/OL].石油地球物理勘探,1-9[2024-05-29].https://doi.org/10.13810/j.cnki.issn.1000-7210.2024.04.009.
[12]王红春,冷婧.基于遗传算法的山西农产品配送中心选址研究[J].物流科技,2024,47(09):1-4+14.DOI:10.13714/j.cnki.1002-3100.2024.09.001.
[13]高琦,梁化典,漆林.一种遗传算法的城市轨道列车节能控制策略研究[J].城市轨道交通研究,2024,27(05):16-19+24.DOI:10.16037/j.1007-869x.2024.05.004.
[14]张朝,谭勇.基于遗传算法改进的建筑能耗预测模型研究[J].北方建筑,2024,9(02):12-16.
[15]石依慧,朱杰江.基于遗传算法的钢框架—BRB结构优化[J].结构工程师,2024,40(02):42-49.DOI:10.15935/j.cnki.jggcs.2024.02.001.
[16]梁华,梁华丽.博弈论课程中递进式实验设计创新探索[J].科技风,2024,(13):101-103.DOI:10.19392/j.cnki.1671-7341.202413034.
[17]孙茜.考虑不确定性的综合能源系统非合作博弈优化调度研究[D].西安理工大学,2020.DOI:10.27398/d.cnki.gxalu.2020.000528.
[18]Párraga M ,Fajardo A ,Urrego R L , et al.A non-cooperative game approach on isolated water-energy microgrids[J].Sustainable Energy, Grids and Networks,2024,38101392-.
[19]Bethsy G G ,G. C M Q ,Viloria C N .Improved genetic algorithm approach for coordinating decision-making in technological disaster management[J].Neural Computing and Applications,2023,36(9):4503-4521.
[20]孔祥
- 绪论
1.1课题背景和意义:
地对空防御作战主要指地面部队通过使用武器装备尽可能地破坏或干扰敌方飞行武器的攻击,从而保护我方资产、人员和装备。为了尽可能减少我方资产损失,需要进行合理的兵力部署。兵力的部署包括军队人员和武器装备数量的部署,其中武器装备是军事力量的重要组成部分,是完成作战任务的物质基础,这就需要地面指挥部队分析己方作战兵力的结构和特点,研究武器部署点及该部署点武器类型、武器数量等部署方案。
近几年来,随着信息技术的快速发展,战争形态正由过去的机械化战争向信息化战争演进,武器装备在战争中的重要性也在不断上升。武器装备部署就是指将武器装备系统中的各个组成部分,按照一定的策略和计划,安排在合适的位置以发挥其最大效能的过程。做好武器装备的部署不仅可提高作战效果减少人员伤亡和损失,还可以提高战略决策的准确性增强国家安全防卫能力。而随着军事武器的智能化、协同化、网络化的发展,这致使地对空防御作战方式呈现出大规模、多目标、多样式,这无疑给地对空防御作战带来了巨大挑战。
因此,在地对空防御作战背景下,针对作战类型的多样化对地对空防御作战中武器的位置、根据被保护目标的重要程度部署数量和投放武器的类型等进行研究是必要的。
1.2兵力部署问题国内外研究现状:
关于兵力部署问题,一般从优化理论或博弈理论等角度进行建模分析。
关于基于优化理论对兵力部署问题的研究。褚凯轩、常天庆[1]采用双层迭代优化模型,基于人工蜂群算法求解模型,求解最优兵力转移比例。樊辉锦、巫银花[2]以航母编队的反无人机蜂群作战兵力部署为研究对象,以防空警戒哨舰和舰载电子战飞机对蜂群打击为约束条件,并通过只能优化算法粒子群算法对算法,寻求最优的兵力部署解空间。于威 、侯学隆[3]以实例抗击美巡航导弹为问题背景,建立了导弹防控部署优化模型,并通过线性规划和遗传算法进行求解,搜寻最优部署方案。Wen Sun和Zenyang Cao[4]基于双嵌套优化架构对战争中复杂问题进行优化部署,实现了防御D的两倍覆盖,从而实现了所有来袭弹道导弹的覆盖,为研究多约束优化问题提供参考。
优化模型关注的是单一决策者在其控制下寻求最优解的问题,无法考虑不同主体之间的竞争合作,而博弈模型关注多个决策者之间的互动和最优策略的寻找。因此也有一些研究者从博弈论的角度对作战中的部署进行研究。芦方旭、米志超【5】对战争中所要使用的武器无人机进行部署,采用势博弈的方式构建无人机部署模型,采用超启发式灰狼算法不断搜寻解空间,并进行实例仿真分析。从博弈的角度研究兵力部署问题的学术研究并不多,但博弈在其他部署方面的研究不占少数。乐艺[6]基于博弈论研究云计算部署,算法通过进化博弈中的复制动态机制确保得到的均衡解是具有渐近稳定性,寻找进化稳定解,并验证其解可以收敛在均衡解上,得到云环境下的部署。姜广胜等[7]基于博弈论构建不完全信息下的动态目标分配模型,建立攻防支付矩阵,利用遗传算法求解不完全信息条件下的纳什均衡,得到动态目标的合理分配部署。韩 晨、刘爱军等【8】研究了在干扰条件下基于博弈论的无人机群部署与组网的方案,并建立了无人机拥塞博弈模型并结合联盟建立模型,采用分布式算法求解模型的纳什均衡。Qilin Feng、Hai Gai[9]提出一种贝叶斯静态博弈论方法优化城市规模的防御资源部署,以中国某城市五家化工厂为例,使用先验概率分布描述每种攻击者发起攻击的可能性,得到了一种类型和多种类型攻击者时的防御部署策略。
综上看来,利用博弈模型对兵力部署问题的研究相对较少,所以在本文中,我将采取非合作博弈模型对所要研究的问题建模并求解。
1.3 遗传算法的国内外研究现状
遗传算法是受自然选择过程启发的智能算法,属于更大的进化算法。在此之前,许多专家学者都运用到了遗传算法求解不同问题。
赵杰、刘锋等【10】利用遗传算法以提高磁共振磁场的均匀性,从被动的匀场数学模型的角度出发,利用遗传算法的的选择交叉和变异,并通过判断迭代次数终止算法的操作,求解出该问题模型的初始稳定的解。朱耀旭、包乾宗【11】在地震数据的研究中,在提取子波和Q值估计中由于计算量过大引入遗传算法简化计算量,以目标函数为适应度函数,采用二进制编码进行Q值估计。王红春,冷 婧【12】在研究产品选址问题中,建立了以选址成本最小化为目标的选址模型,利用遗传算法求解最优问题,并采取二进制编码均匀交叉等方式求解两处最小成本选址方案。高琦、梁化典【13】建立了列车运行中的动力学方程,定义列车运行过程的约束条件,利用遗传算法的模型对列车在运行期间的能耗在不同区间分配和区间最优巡航速度进行求解,通过遗传算法中的交叉变异等过程,得到了节能效果最优的驾驶速度。张 朝、谭 勇【14】在做建筑能耗预测模型的研究中,针对人员相对来说集中的高校建筑的能耗进行了分析,并通过收集校园内大量建筑能耗的数据,同时采用遗传算法优化 BP 和 LSTM 建筑能耗预测模型。石依慧、朱杰江【15】在研究钢框架—BRB结构优化问题中,利用遗传算法对钢框架—BRB结构进行整体优化,以造价最低为目标即适应度函数,引入 DCPM 约束处理法,提升了算法对约束条件的处理能力。
在遗传算法的发展中,利用遗传算法对博弈模型求解较为少见,因此在本文的研究中,我们将采取遗传算法对问题的兵力部署非合作博弈模型进行求解研究。
1.4本文的主要研究内容
本文就基于博弈的地对空防御作战的兵力部署问题展开讨论,将作战地进行战区区域的划分,根据有限的兵力在作战中提前部署规划,使得有限的兵力合理的部署给各个作战区域,使每个作战区域都得到合理有效的保护,在模型建立过程中考虑不同类型的战机对战机的作战效益指数进行计算区分战机类型的区别。
本文共分为六章,具体内容如下:
- 先介绍了本课题要研究的背景和意义,然后通过国内外文献的综述对兵力部署问题从优化和博弈理论的国内外研究现状进行阐述。并提出在本文中要研究的内容和思路。
- 对行文所要用到的相关知识进行相关原理介绍,主要介绍博弈与非合作博弈基本理念,并对非合作博弈展开说明其数学表达,对本文所用遗传算法进行简要阐述,为后文奠定理论基础。
- 建立地对空防御作战兵力部署非合作博弈模型,对所要建立的模型展开问题描述并进行必要的符号说明,基于不用种型号战机的探测能力,火力系数等因数提出对数法计算公式便于后续对不同种类战机的作战效益计算。
- 对第三章的非合作博弈模型设计算法求解,本文采用遗传算法求解,在本章中主要设计遗传算法对兵力部署问题求解,并对近似纳什均衡做出必要解释,对算法的具体步骤细化说明并给出算法流程图,未后续仿真做基础。
- 针对上一章节的算法设计,给出具体的实例描述,收集战机数据并计算,利用matlab实现算法的仿真得到具体结果,并对结果进行分析。
- 总结全文,提出不足与展望,并介绍下一步的研究重点。
- 相关理论
本章主要论述本文中要使用到的非合作博弈以及遗传算法的相关理论,为后续问题的研究打下基础。
2.1博弈与非合作博弈
博弈论【16】主要是利益冲突背景下的多个独立博弈主体的决策问题,其核心就是基于他方信息作出最会利己的反应,最终实现利益分配的相对均衡。而博弈并非本世纪出现的一个新鲜名词,早在春秋战国时期我国便出现了博弈思想的萌芽,形成了早期蕴含博弈思想的巨著——《孙子兵法》。进入近代,西方国家在博弈论相关理论上投入大量研究精力与人力。而进入二十世纪中期,纳什发表了多篇关键性论文,给出了系统性的、公理化的非合作博弈理论规范,并且采用纯数学推理给出 n 人非合作博弈均衡的存在性要求,奠定了其的应用价值。直到今日,博弈论已经得到了极大的发展,获得了许多工程领域的独爱,逐渐成为现代数学的一个重要分支。
通常情况下,博弈的问题主要包括四大基本构成元素和两大隐含假设。四大基本构成元素分别为:博弈的局中人、策略集合、收益(支付)函数以及博弈均衡。其中,博弈的局中人即参与博弈的个体,数学表达式
;策略集则为博弈的局中人针对他方信息所做出的策略
的集合,即
;收益函数是用来评估博弈决策过程中的获利收益情况,并以此作为调整下一轮迭代决策的重要信息,则收益函数集合的数学表达形式可以表示为:
;而博弈的均衡为博弈理论指导下形成稳定的策略以及收益态势,即简单来说是博弈问题的解,可以表示为
; 从而,一个博弈的完整表达即可表示为:
。两大隐含假设为:理性假设和信息共享假设;理性假设强调的是形成博弈局势的局中人存在趋利性,是理性的;信息共享旨在强调博弈局中人共同所有一定数量的信息,在一定程度上知道对方的资源和反应的趋势。
非合作博弈理论【17】为博弈论中最先被挖掘出来的,是整个理论的基石。非合作博弈指的是在当前策略环境下,非合作框架把所有人的行动都当成是个别人的行动。它主要强调的是一个人进行的自主的决策,而与此策略环境中其他人的行动无关。通常就是我们字面上看到的博弈的意思。博弈并不只包含了冲突元素,而往往在很多情况下,既包含了冲突元素,也包含了合作元素。即冲突和合作是重叠的。下述将对非合作博弈论的表达形式展开叙述。
2.2非合作博弈的数学表述
非合作博弈主要有两种典型的纯数学式规范表达形式,这两种形式分别是标准(策略)型博弈、混合策略博弈。前者与后者的区别在与决策是否具有同时性,分别适用于静态、动态博弈【18】。下面分别介绍这两类博弈的数学表达形式。
标准型博弈,该种博弈包含三个组分部分:
(1)博弈的局中人:
;
(2)博弈的局中人i 的策略,并且
,策略的集合为
;
(3)策略的集合
其对应的收益可以表示为
;
由此,总结该标准型博弈的数学形式可以表示为:
。
混合策略博弈,同标准的博弈,该类博弈也包含三个必备组分:
(1)博弈的局中人:
;
(2)博弈局中人i 的混合策略,并且 ,
,其策略的组合
;
(3)服从概率的密度分布规律下的期望收益可以如下表示:
混合型博弈的数学形式为
。
2.3非合作博弈纳什均衡与求解
非合作博弈的纳什均衡由约翰提出,并为学界和工程应用达成了统一并保存至今。其定理如下,对于博弈:
或者
,
存在策略的反应集合
或者
,满足
下:
即
或
是博弈的纳什均衡,且
时,
。
2.4遗传算法介绍
遗传算法的基本原理源于达尔文的自然选择和遗传学的基本概念。在遗传算法中,解决方案的每个实例被视为一个“个体”,整个解决方案空间形成一个“种群”。每个个体通过一串“基因”来表示,这些基因编码了解决方案的具体参数。遗传算法通过迭代过程,不断改进种群的质量,逼近最优解。其核心步骤包括选择(Selection)、交叉(Crossover)和突变(Mutation)【19】。
对遗传算法的进一步推导,考虑一个简化的遗传算法模型,其适应度函数f(x)用于评估每一个个体的性能,其中x是一个编码了个体特征的向量。算法的目标是最大化适应度函数。遗传算法的一次迭代可以表示为以下步骤:
首先选择:个体被选择用于繁殖的概率与它的适应度成正比。假设我们设
是第i个个体的被选择的概率,则:
,
其中
为第i个个体的适应度,N表示种群中个体的总数。
其次交叉:选择的个体通过交叉操作生成新的后代。假设交叉点为g,并考虑两个个体
和
,后代
可以表示如下:
最后变异:以小的概率
修改新生个体的某些基因,引入变异,增加了种群的多样性,对于基因
,突变的操作可以如下表示;
其中,
表示随机的变化量,
表示突变率。
通过不断地重复以上的这些步骤,遗传算法净多很多次的迭代后就能够逐步的改进解决问题的质量,一步一步接近最优解,其中,每一代的适应度函数通常都会提高,表明算法在解决具体问题上是有效的。
其遗传算法的基本实现步骤如下:
Step 1:初始化种群。生成初始种群。
Step2:评估适应度。为每个个体计算适应度,适应度高的个体更有可能被选中用于生成下一代。
Step3:选择过程。根据个体的适应度选择若干优秀个体,为交叉和变异做准备。
Step4:交叉操作。通过某种方式(如单点交叉)将选择的个体配对,交换它们的部分基因。
Step5:变异操作。以较低的概率修改个体的某些基因,以增加种群的遗传多样性。
Step6:生成新种群:从上一代的优秀个体和新生成的个体中,形成新的种群。
Step7:终止条件:如果达到预设的终止条件(如最大迭代次数或适应度阈值),则停止迭代
2.5本章小结
本章介绍了本篇论文中要使用到的相关原理。首先介绍了博弈以及非合作博弈的相关概念,并对非合作博弈模型的基本数学表达展开介绍。在此基础上介绍说明非合作博弈的求解即纳什均衡的基本理论。然后简要的介绍了遗传算法的基本思想原理和算法的基本步骤。为后续建模奠定了一定的理论基础。
- 兵力部署博弈模型的建立
3.1问题描述与假设
3.1.1问题描述
在地对空防御作战中,需要考虑诸多问题,如战略要地,部署的兵力和武器数量等,在本文中主要考虑我方自己的兵力部署问题,在作战前提前做好初步的武器部署,确保在实际战争中尽可能的获取战争的胜利,在实际战争中,通常会存在作战区域的划分,如将南海划分为东西南北中沙群岛五大作战区域,本文就作战区域和武器部署展开讨论,根据战区数目的划分和拥有战机的种类和数量进行部署,对于每个战区来说都想要尽可能的使用作战指数高的战机来使自己得到更有效的防御,而对整体作战来说希望达到整体区域都得到有效的保护,这就需要指挥者利用有限的武器装备合理的分配给各战争区域。
就本问题展开模型假设,假设我方拥有a种型号的和n个作战区域,其中每种型号的战机分别有
,
,…
架,那么本文研究的兵力部署问题可以用如下图示表示:
即根据作战区域的划分,部署不同机型的战机和战机数量,使得我方作战区域都被合理均衡的有效保护,部署策略的不同,得到的部署收益就有所不同。这一过程存在博弈,因此在本问题的研究中将建立非合作博弈模型求解问题。
3.1.2模型假设
在本文中,兵力部署采用非合作博弈模型,并在以下假设条件下进行:
(1)从博弈的角度,博弈的局中人在不知道他方部署的策略的情况下选择各自部署策略,因此不论是否同时选择,都假设是同时做出的决策。
(2)作战前,每个局中人都已知有限的战机数量和类型。
(3)根据作战的实际场地进行战区的划分,本文对每个战区没有偏袒,即各战区的权重相同。
3.2战机作战效益的综合指数评价
对战机作战效益的分析是为了方便部署合理的战机分配给各个战区达到作战之前部署的合理分配,本文采用对数分析法对战机的作战效益进行描述,考虑战机的机动性,火力探测目标的能力,生存能力,航程及电子信息对抗的能力进行研究【20】。针对这6个重要的作战指标,其计算方法如下:
其中B表示战机的机动性的参数,A表示火力系数,一般的,战机都装有导弹和航炮,则
表示导弹的火力系数,
表示航炮的火力系数,E表示探测能力,
表示生存能力系数,
表示航程系数,
表示对抗能力系数。
- 战机的机动性
战机的机动性是由战机最大过载
和爬升率决定的,其计算公式为:
- 火力探测能力
火力探测能力系数用A表示,其中战机可能装载航炮和导弹,则火力的探测能力系数就由航炮的火力系数和导弹的火力系数构成,表示为:
其中
表示航炮的火力系数,
表示导弹的火力系数。
其中航炮的火力系数可以计算为:
r 为每分钟发射率;
为弹丸初速;
为弹丸重量;R为航炮的口径;n 为航炮的配置数量。
导弹的火力系数可以计算为:
其中,
为最大实际有效射程;
为允许发射的高度差;
为导弹最大过载量。
- 雷达的探测能力
雷达的探测能力可以计算表示为;
其中,
表示为发现的最大距离,
跟踪的目标数量,
为允许攻击的目标数量。
- 生存能力
生存能力可以计算表示为:
其中,
为战机的机翼长,
为战机的全长。
- 航程系数
航程系数可以计算表示为:
其中,Q示战机存油的最大的航行长度。
- 对抗能力
本文考虑的对抗能力主要考虑电子信息的对抗能力,实际作战战机的对抗能力可根据战机的装备构成决定,如装有全向雷达告警系统的战机的电子信息对抗系数为1.05等。
3.3符号说明
在接下来所建立的兵力部署非合作博弈模型及求解中,需用到一下变量:
符号 | 描述 |
G | 表示非合作博弈 |
N | 博弈模型中的局中人 |
| 第j种型号的战机数量 |
| 战区i的部署的策略 |
| 战区i部署的第j种型号的战机数量 |
| 非合作博弈中的支付函数 |
| 适应度函数 |
| 遗传算法的交叉率 |
| 遗传算法的变异率 |
| 定义的GA的最大生成 |
k | 迭代次数 |
3.4基于地对空防御作战博弈模型的建立
根据博弈模型,我们可知博弈模型具有三要素:局中人N、策略为S、支付函数为U,建立兵力部署非合作博弈模型,并将博弈模型转化为优化问题求解近似纳什均衡,得到均衡合理的部署策略组合。
(1)定义局中人
在此模型中,局中人设为n个战区,局中人表示为N={1,2,3…,n}其中n表示战区n。
(2)定义局中人策略
每个战区作为局中人,去选择战机种类和数量让自己得到有效的保护,每个局中人可以选择的战机种类有a种,则战机的中数量可以表示为:
,其中M表示战机的总数量,
表示第j种型号的战机有
架,则M≥n,每个战区部署的战机总数为I,则
。
则每个战区的部署的策略
可以表示为
。
其中,
表示战区i的部署策略,
表示在战区i部署的第j种型号的战机一共部署了
架。并且满足
。对于每个战区而言,可选择的策略空间共有
种组合方式。则各个战区的部署策略构成策略集S,则策略集可以表示为:
。
这里我们指出,如果在实际作战中作战这拥有的兵器数量巨大,如果以单架战机进行武器部署单元会使整个作战策略集过于庞大,增加建模和计算的难度,如果在实际问题中运用本模型可以考虑将战机进行分组编队等形式,如同种型号4架战机为一组行成一个部署单元,这样就减少了策略集的容量,减轻了建模的求解过程,具体战役应根据具体兵力所有量进行分析和有效合理分组。
- 定义支付函数
假设局中人战区i选择了策略
,策略的表达参照式(1),则战区i的作战收益为所选择的战机型号的作战指数与此种型号战机数量的乘积求和,
则战区作战的支付效用函数为:
其中,
表示第j种型号的战机在战区i的部署数量,
表示第j种型号的战机的作战效益指数。
因为局中人各战区都想要争得作战效益指数高的战机去使得自身得到最有效的保护,则各战区之间存在博弈,至此,非合作博弈模型构建完成。
3.5 本章小节
本章建立了基于地对空防御作战兵力部署的非合作博弈模型。首先,在本章中对所要研究的兵力部署问题进行了具体的描述,并给出了合理的假设,在此基础上,对不同战机的作战效益利用对数法进行计算,主要考虑战机的生存能力,活力系数,他么能力等6种因素展开讨论。基于有限的兵力部署各个战区建立非合作博弈模型,并对模型中及接下来的算法设计中所用到的变量符号做解释说明。
在本章建立的兵力部署非合作博弈模型的基础上,下一章将设计具体算法求解本章模型,拟定采取遗传算法对本章模型进行求解。
- 基于遗传算法对兵力部署博弈模型求解
4.1纳什均衡
纳什均衡要求所有人都没有偏离当前策略的动机。纳什均衡证明了n个人的有限博弈一定存在纳什均衡,但是即使对于两个人的情形,如果每个人的策略空间很大,均衡的求解还是会很困难。在兵力部署问题中就存在策略空间大且可能不存在绝对的均衡,如果放松求解的条件,寻求一个策略使得每个人偏离增加的收益不超过一个常数,则这个策略叫做一个近似纳什均衡(Approximate Nash Equilibria)。 在本问题背景下,没有单个战区能够通过改变自己的部署策略而单独获得更多的保护或效益,考虑到其他战区的策略选择。具体来说,求得近似纳什均衡可以提供以下信息,每个战区应该部署哪些型号的战机以及每种型号的战机数量。均衡状态下的保护水平,每个战区在均衡状态下可以获得的保护水平,这可以作为评估和比较不同部署方案的依据。决策支持,为指挥者提供决策支持,帮助他们在多种可能的部署方案中选择最优或近似最优的方案。
在实际应用中,由于策略集可能非常庞大,用传统的划线法等求解精确的纳什均衡可能非常困难或不可行。因此,使用算法(如遗传算法)来求解近似纳什均衡成为一种实用的方法。这种方法可以在可接受的计算资源和时间内,找到一个接近均衡的解决方案,对本问题的求解采用求取近似的纳什均衡,使得每个战区都得到均衡有效的兵力部署,即求得在有限兵力和一定数量的战区的前提下,得到兵力部署博弈模型的近似纳什均衡的兵力分配部署,求解该问题本文将采取遗传算法求解。
4.2遗传算法的介绍
遗传算法(Genetic Algorithm, GA)是一种启发式搜索算法,它模仿了自然选择的过程,通过选择、交叉(或称为重组)、变异等操作在候选解的种群中进行搜索,以找到最优或近似最优解。遗传算法因其简单、鲁棒性强、易于实现等优点,在许多领域都有应用,关于地对空防御作战中的兵力部署问题,涉及到兵力部署模型的建立和博弈模型的构建。尤其是在策略集的数目非常庞大时,传统的划线法可能不可行,而遗传算法可以有效地搜索解空间,其一般算法步骤包括编码,初始化,适应度评估,选择,交叉,变异,新一代种群,终止条件,输出。
4.4算法设计
- 染色体编码:在遗传算法中,战机数量的编码方式取决于如何将兵力部署方案表示为染色体,常用的染色体编码方式有二进制编码,实数编码,集合编码等形式,为了更好的表示,我将采取直接编码的方式,在直接编码中,按照有n个战区,a种类型进行划分,一共是
个基因为一个染色体,其中每a个基因为一个战区,a个基因分别代表每种类型战机的数量。
如假设有四个战区,共有三种型号的战机,其数量分别为2,2,3架,则直接编码可以如下表示:
1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 |
图1
如图1所示表示为该条染色体由12个基因组成,每三个基因表示一个战区,共有四个战区,每个战区内的三个基因依此代表每种型号的战机部署数量,如前三个基因可以表示为在战区1部署第一种型号的战机共1架,第二种型号的战机共1架。同时在编码部署中满足每个战区部署战机数量大于等于1,每种类型战机部署数量不得超过战机总数。
初始化种群:(按照算法步骤那么写)为了保证随机输出一组兵力部署方案生成染色体行成初始种群为可行的,将进行如下操作:
Step1:确定基因数量为
个,并先赋值为0.
Stept2:对战机进行分配,战机总数为M架,战区数量为n,不考虑型号,依此选择每一架战机,分配数量为1,分配给每个战区,每一个战区分配的概率均等,直到所有战机分配完。
Stept3:根据随机分配行成初始化种群,在本文中随机生成20个初始种群,即20条染色体。
如上的例子来说,战区总数为4,战机总数为7架,将7架战机,依次选择每一架战机部署进各个战区,可以用如下图示表示其中一个初始种群:
1 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |
图2
(2)适应度函数:众所周知,适应度函数的设计是遗传算法的关键,通过计算它的适应度的值,可以对种群中的所有个体进行评估,并为每一代的遗传操作提供标准。因此,现在我们要做的重要的事情就是设计一个适合兵力部署的适应度函数。
其中,
表示第k次迭代中当前染色体的战区i的收益值,
表示为第k-1次迭代中所有染色体中的战区i的最大收益值,即
。
而设计此适应度函数则是为了求解本文研究的兵力部署博弈模型的近似纳什均衡,即纳什均衡是指每个战区都希望调整策略使最大化自身收益,根据这一特性,设计本适应度函数考虑每次迭代后各战区收益变化值,判断在策略改变的情况下收益值的变化,从而选取最优部署策略即纳什均衡。
(3)遗传操作
1.选择操作:(怎么选择的)根据适应度函数选择适应度函数值大的染色体,用于后续的交叉和变异操作,对计算种群得到最大收益。
2.交叉操作:在本文中,交叉方式为单点交叉,即在父代染色体中选择两个个体,每个个体被选择的几率均等,再从被选择的每一条染色体
个基因中随机挑选一组基因即随机选取同一个战区,并从选取的a个基因中随机挑选一个基因即挑选某一型号的战机,每种型号的战机被选择概率均等,随机对挑选的两组基因中选择相同型号的战机进行交换战机数量,产生新的兵力部署方案。
如上例所示,随机挑选两条染色体即两种部署方案,在同一战区对同种型号战机之间数量进行交叉互换,可以用如下图示表示:
图3
即如图3所示,将两条染色体的战区一第二种类型的战机数量进行交叉互换,得到新的部署方案。
交叉修复策略:在交叉过程后,会得到新的染色体,即新的部署策略,对新的部署策略进行判断,若交叉后即改变此型号战机的部署数量,如交叉后部署进站区此型号战机总数量
大于战机数量总数
,则要进行策略修复,将随机选取其他战区该种型号的战机数量减少
架。如若增减后战区总战机数量小于1或为负值则重新交叉。
3.变异操作:随机改变染色体中的某些基因,以引入新的变异,本文中的变异操作采取均匀变异,由于战机的数量较少,通过rand(1,2)随机改变染色体中的某一个基因进行改变,随机的增加或者减少基因数量,其中变异战机数量依据:变异数量决定解的质量,变异范围越小,解的质量越高。可根据战机数量多少,合理选择较小的或较大的战机变异数量有利于解的生成。本文中的变异策略为基本位变异,对染色体中的每个基因,根据变异率决定是否进行变异。如果决定变异,随机选择一个新的值赋给该基因。变异操作涉及对个体染色体的随机改变。在遗传算法的每次迭代中,根据预定的变异率,对选中的个体执行变异操作,变异率的取值为(0,1)之间的一个值,表达为基因变异概率的大小,为了尽快达到收敛效率,变异率采取的值为0.8。
依然以上述例子为例,选择其中一条染色体中的一个基因位进行变异,示意图如下:
图4
如图4所示,随机选择一条染色体中的一个基因位,如选择第一个战区中第二种型号的战机数进行变异,随机增加数量1,得到新的部署策略
变异修复策略:在变异后对新产生的染色体仍要进行策略的修复,在随机一个战区某种型号战机进行了随机的增加后减少数量后,同时随机选取其他战区中相同型号的战机数相应减少或增加相同的数量确保变异后的策略为可行的,操作结束后进行判断每一个战区是否战机总数大于等于1,每种型号战机总数是否超过此型号战机总数,每种战机的部署是否为负数,如若都满足则输出新的部署策略,若不符合的重新变异。在本例子中在战区1将第二种型号战机数增加1的同时随机选取战区2的第二种战机数量减少1。
4.5 GA算法的基本流程如下:
Step1:初始化种群。设定种群数,即染色体数目,以及基因数目,由战区数n,战机种类数a,基因数为n×a,以及每种类型战机的六个作战参数,计算各个染色体作战效益,得到最大作战收益染色体的索引值。
Step2:选择父代。利用轮盘赌的方式挑选父代,基于适应度来选择合适的父代即合适的染色体来选择战机分配方案。
Step3:交叉产生后代。采用单点交叉方案,对两个染色体战区战机进行交叉操作。交叉率为
。
Step4:变异。分别对染色体即战区分配方案中的基因进行变异操作,变异率为
,随机增加或者减少,之后进行变异可行解判断,依据每个类型战机数目最大数目进行判定。
Step5:替换种群中的个体。采用精英策略替换种群,合并父代与子代种群,计算适应度即各个染色体收益,选择前20名作为新一代种群。
Step6:如果满足停止条件,即迭代次数达到最大迭代次数,输出最优战机分配方案以及满足纳什均衡条件下的战机各战区分配策略。
则具体流程可用以下图解展示:
这个流程图老师说 遗传算法参数设置这话没说完,参数是什么要写出来
下一步初始化应该是两部分 初始化算法 和初始化问题的相关参数,然后要初始化染色体初始化种群,在接下来计算种群中每个染色体的适应度进行评估 然后在进行选择操作,因为前面已经具体介绍了怎么选择,流程图就可以写根据哪个公式来选择。然后进行遗传变异
然后老师说终止条件应该有两个,根据这个参考文献这个来对照看
4.6 本章小结
在本章节中,对上一章节的非合作博弈模型进行算法设计,首先将非合作博弈所求解的纳什均衡与本算法进行融合,由于实际战争中的一些复杂因素,本问题将采取求解近似纳什均衡,并对近似纳什均衡做出解释。在此基础上对使用遗传算法求解本问题做出解释,建立适应度函数,对算法设计的各个流程分别展开说明,并用具体例子做出图示和解释,将算法融入本文要研究的实际问题中,写出算法的具体流程并画出本问题的算法流程图。
在本章算法设计的基础上,下一章节将通过具体的实力实现本算法的仿真,本章节为下一章节的算法实现打下基础。
- 算法仿真
5.1实例描述
以南海为例,将南海划分为东沙群岛,南沙群岛,西沙群岛,北沙群岛四个战区,其中我方拥有的战机类型有5种,包括,3架歼-11B,2架歼-10A,1架歼轰-7,3架苏-22,2架苏-30。在此问题背景下展开兵力部署模型的仿真实现,基于matlab软件编程,得到结构,其中关于战机数据如下所示:
参数数据
战机类型 | 翼长 (米) | 全长 (m) | 航程 (km) | 最大过载 (G) | 爬升率 (m/s) |
歼-11B | 14.70 | 21.90 | 4390 | 9 | 300 |
歼-10A | 9.75 | 16.43 | 1850 | 9 | 200 |
歼轰-7 | 12.70 | 22.30 | 3650 | 7.5 | 200 |
苏-22 | 13.68 | 19.02 | 2300 | 7 | 180 |
苏-30 | 14.70 | 21.94 | 4000 | 8.5 | 230 |
探测能力数据
机型 | 最大跟踪距离(km) | 同时跟踪目标数 | 同时攻击目标数 | 探测能力系数 | |
JL-10A | 歼-11B 歼-10A 歼轰-7 | 80 | 15 | 6 | 667.90 |
N001 | 苏-22 | 100 | 10 | 2 | 967.99 |
N011M | 苏-30 | 60 | 15 | 4 | 521.55 |
航炮的火力参数数据
机型 | 射速 (r/min) | 初速 (m/s) | 弹丸重量(G) | 口径 (mm) | 火力系数 | |
Gsh-30-1 | 歼-11B 苏-30 | 1800 | 900 | 39 | 30 | 0.12 |
Gsh-23L | 歼-10A | 3600 | 715 | 200 | 23 | 0.59 |
NR-30 | 苏-22 | 1000 | 780 | 410 | 30 | 0.51 |
空空导弹火力参数
射程 (km) | 射高 (km) | 杀伤率 | 最大过载(G) | 火力参数 | ||
PL-12 | 100 | 21 | 75% | 38 | 1710 | |
PL-8 | 15 | 20 | 70% | 35 | 210 | |
R-73 | 35 | 20 | 60% | 12 | 144 | |
R-M13 | 8 | 4 | 70% | 11 | 7.04 |
各战机携带武器类型及数量数据
携带武器数量 | Gsh-30-1 | Gsh-23L | NR-30 | PL-12 | PL-8 | R-73 | R-M13 |
歼-11B | 1 | 0 | 0 | 4 | 2 | 0 | 0 |
歼-10A | 0 | 6 | 0 | 0 | 2 | 0 | 0 |
歼轰-7 | 0 | 1 | 0 | 2 | 4 | 0 | 0 |
苏-22 | 0 | 0 | 2 | 0 | 0 | 0 | 4 |
苏-30 | 1 | 0 | 0 | 0 | 0 | 6 | 0 |
用对数法计算战机作战效益指数
机型 | 歼-11B | 歼-10A | 歼轰-7 | 苏-22 | 苏-30 |
机动性参数C | 18.00 | 15.00 | 13.50 | 12.40 | 15.40 |
火力参数 | 3717.06 | 3720.48 | 800.67 | 15.10 | 352.85 |
探测能力参数E | 667.99 | 667.99 | 667.99 | 967.99 | 521.55 |
生存能力 | 0.95 | 1 | 0.96 | 1.02 | 0.95 |
航程参数 | 1.33 | 1.07 | 1.27 | 1.13 | 1.30 |
电子对抗能力 | 1.2 | 1.2 | 1.2 | 1.15 | 1.2 |
作战效益指数 | 26.71 | 22.39 | 23.11 | 15.34 | 22.02 |
- 总结与展望
参考文献
参考文献:
[1]褚凯轩,常天庆,孔德鹏.基于Jackson网络的地面分队防御作战兵力部署方法[J].控制与决策,2023,38(1):219-227
[2]樊辉锦,巫银花,毕月,等.航母编队反无人机蜂群作战兵力部署模型及优化[J].火力与指挥控制,2023,48(06):55-61+69.
[3]于威,侯学隆.要地区域防空兵力优化部署问题研究[J].舰船电子工程,2022,42(12):37-39.
[4] Wen Sun,Zeyang Cao,Gang Wang,Yafei Song.An Optimized Double-Nested Anti-Missile Force Deployment Based on the Deep Kuhn–Munkres Algorithm[J]. Air Defense and Antimissile School, Air Force Engineering University, Xi’an 710051
[5]芦方旭,米志超,马骏,等.基于势博弈的多QoS无人机基站空间优化部署[J].航空学报,2022,43(09):678-687.
[6]乐艺.一种基于进化博弈理论的虚拟机部署算法[J].计算机应用与软件,2021,038(7):106-112
[7]姜广胜,史宪铭,陈静,赵美,刘昊邦.基于不完全信息博弈的动态武器目标分配[J].指挥控制与仿真,2022,44(3):20-24
[8]韩晨,刘爱军,安康,等.干扰环境下基于博弈论的无人机群部署与组网方法[J].电子与信息学报,2022,44(03):860-870.
[9] Qilin Feng, Hao Cai , Zhilong Chen.Using game theory to optimize the allocation of defensive resources on a city scale to protect chemical facilities against multiple types of attackers[J].PLA University of Science and Technology, Nanjing 210014
[10]赵杰,刘锋,夏灵,等.基于遗传算法-序列二次规划的磁共振被动匀场优化方法[J].浙江大学学报(工学版),2024,58(06):1305-1314.
[11]朱耀旭,包乾宗.应用遗传算法估计非稳态地震数据的混合相位子波及Q值[J/OL].石油地球物理勘探,1-9[2024-05-29].https://doi.org/10.13810/j.cnki.issn.1000-7210.2024.04.009.
[12]王红春,冷婧.基于遗传算法的山西农产品配送中心选址研究[J].物流科技,2024,47(09):1-4+14.DOI:10.13714/j.cnki.1002-3100.2024.09.001.
[13]高琦,梁化典,漆林.一种遗传算法的城市轨道列车节能控制策略研究[J].城市轨道交通研究,2024,27(05):16-19+24.DOI:10.16037/j.1007-869x.2024.05.004.
[14]张朝,谭勇.基于遗传算法改进的建筑能耗预测模型研究[J].北方建筑,2024,9(02):12-16.
[15]石依慧,朱杰江.基于遗传算法的钢框架—BRB结构优化[J].结构工程师,2024,40(02):42-49.DOI:10.15935/j.cnki.jggcs.2024.02.001.
[16]梁华,梁华丽.博弈论课程中递进式实验设计创新探索[J].科技风,2024,(13):101-103.DOI:10.19392/j.cnki.1671-7341.202413034.
[17]孙茜.考虑不确定性的综合能源系统非合作博弈优化调度研究[D].西安理工大学,2020.DOI:10.27398/d.cnki.gxalu.2020.000528.
[18]Párraga M ,Fajardo A ,Urrego R L , et al.A non-cooperative game approach on isolated water-energy microgrids[J].Sustainable Energy, Grids and Networks,2024,38101392-.
[19]Bethsy G G ,G. C M Q ,Viloria C N .Improved genetic algorithm approach for coordinating decision-making in technological disaster management[J].Neural Computing and Applications,2023,36(9):4503-4521.
[20]孔祥宇.粒子群算法求解区域防空兵力部署纳什均衡策略的研究[D].华中科技大学[2024-03-02].DOI:CNKI:CDMD:2.1016.779516.
致谢
宇.粒子群算法求解区域防空兵力部署纳什均衡策略的研究[D].华中科技大学[2024-03-02].DOI:CNKI:CDMD:2.1016.779516.
致谢