题目描述
- 设顺序存储的二叉树中有编号为i和j的两个结点,请设计算法求出它们最近的公共祖先结点的编号
设计思路
- 令两个下标从两个初始点开始,你追我赶的交替向上,直到在某地相遇。即先令较大的下标(对应位置较低的点)p通过p/=2向上访问父节点——这是顺序存储树带来的最大方便——可以通过简单的计算得到父节点的位置——直到这个p超过了另一个下标,就令另一个下标开始往上访问。
- 这样算法的复杂度就等于两个下标走过的距离之和O(L1+L2)。
- 在实现两个下标交替上升时,可以令其中一个下标专门负责攀升,一旦它比另一个下标位置靠前,就将两个下标交换位置,这样可以使得程序更加简洁。
输入输出
-
输入:15
4 3 5 1 10 0 7 0 2 0 9 0 6 8
11 4 -
输出:2 3
-
输入说明:第一行给出正整数N,即顺序存储的最大容量;第二行给出N个非负整数,其间以空格分隔,0代表二叉树的空节点第三行给出一对结点编号i和j。保证输入正确对应一颗二叉树,且i>=1,j<=N
-
输出说明:如果i和j对应的是空节点,则输出“ERROR :T[x] Is NULL”,其中x是i或j中最先发现错误的那个编号;否则在一行中输出编号为i和j的两个结点的公共祖先结点的编号和值,其间以一个空格分隔。
代码
下面附上源代码
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#define MAXN 30
using namespace std;
// 顺序表的定义
typedef struct LNode *PtrToLNode;
struct LNode{
int Data[MAXN];
int Last;
};
typedef PtrToLNode List;
typedef List Tree; //用顺序表定义树
int NCA(int p1,int p2){
while(p1 != p2){
//先保证P1在P2上面
if(p1 > p2){swap(p1,p2);}
while(p2>p1){
p2/=2; //p2向上追赶p1
}
}
return p1;
}
int main()
{
int N;
int p1,p2,p;
Tree T = (Tree)malloc(sizeof(struct LNode));
//读入树
T->Data[0] = 0; T->Last = 0;
cin>>N;
for(T->Last = 1;T->Last<= N;T->Last++)
cin>>T->Data[T->Last];
T->Last--;
cin>>p1>>p2;
if(!T->Data[p1]) printf("ERROR:T[%d]c is NULL\n",p1);
else if(!T->Data[p2]) printf("ERROR:T[%d] is NULL\n",p2);
else{
p = NCA(p1,p2);
cout<<p<<" "<<T->Data[p];
}
return 0;
}