自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 ch3练习题

ch3.复杂一点的查询 练习题-第一部分 3.1 创建出满足下述三个条件的视图(视图名称为 ViewPractice5_1)。使用 product(商品)表作为参照表,假设表中包含初始状态的 8 行数据。 条件 1:销售单价大于等于 1000 日元。 条件 2:登记日期是 2009 年 9 月 20 日。 条件 3:包含商品名称、销售单价和登记日期三列。 对该视图执行 SELECT 语句的结果如下所示。 答案: mysql> create view ViewPractise5_1 -&gt

2021-08-22 20:13:37 253

原创 mysql约束

MySQL约束 参考了b站的一天学会mysql数据库 链接: https://blog.csdn.net/weixin_57909453/article/details/119789974 主键约束 它能够唯一确定一张表中的一条记录,不能重复且主键值不能为空 create table user( id int primary key, name varchar(20)); insert into user values(1,'张三'); Query OK, 1 row affected (0.01 sec

2021-08-19 12:21:50 289

原创 ch02:基础查询与排序

第二章:基础查询与排序 1.1 SELECT语句基础 语法 SELECT <列名>, FROM <表名>; 例子 -- 想要查询出全部列 SELECT * FROM product; -- SQL语句可以使用AS关键字为列设定别名(用中文时需要双引号(“”))。 SELECT product_id As id, product_name As name, purchase_price AS "进货单价" FROM produc

2021-08-18 22:10:04 238

原创 ch01笔记

1.1数据库的一些知识 ​ 数据库是将大量数据保存起来,通过计算机加工而成的可以进行高效访问的数据集合。该数据集合称为数据库(Database,DB)。用来管理数据库的计算机系统称为数据库管理系统(Database Management System,DBMS)。 DBMS的种类: SQL语句的种类: 1.2数据库的创建 –如何创建数据库? mysql> CREATE DATABASE shop;` –如何查看是否成功地创建了数据库? mysql> SHOW DATABASES

2021-08-17 21:16:20 157 1

原创 Datawhale动手学数据分析第三章 模型搭建和评估--建模

通过前两章的学习,我们目前拥有的是经过清洗后的泰坦尼克号的数据集,那么我们这次的目的就是,完成泰坦尼克号存活预测这个任务。 载入我们提供清洗之后的数据(clear_data.csv),大家也将原始数据载入(train.csv),说说他们有什么不同 import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from IPython.display import Image p

2021-07-21 23:26:10 379 1

原创 第二章:数据可视化

.7.1 任务一:跟着书本第九章,了解matplotlib,自己创建一个数据项,对其进行基本可视化 【思考】最基本的可视化图案有散点图、核密度图、hexbin图、饼图、直方图、条形图、折线图、曲面图、蜘蛛图、箱线图、热力图、成对关系图。 散点图 import matplotlib.pyplot as plt import seaborn as sns import numpy as np import pandas as pd N=1000 x=np.random.randn(N)#返回1行n列满足

2021-07-19 23:01:01 351

原创 Datawhale动手学数据分析——第二章数据清洗、重构和可视化

在这个章节里,进行的是对数据的清洗、重构和可视化的操作。 2.1 缺失值观察与处理 2.1.1 任务一:缺失值观察 import numpy as np import pandas as pd df=pd.read_csv('train.csv') df.head() #方法一 df.info() #方法二 df.isnull().sum() 2.1.2 任务二:对缺失值进行处理 (1)利用np.nan,None以及.isnull()检索空缺值 df[df['Age']=...

2021-07-15 18:12:08 478

原创 Datawhale动手学数据分析——第一章:数据加载及探索性数据分析

1.1载入数据 1.1.1任务一:导入numpy和pandas import numpy as np import pandas as pd 1.1.2任务二:载入数据并查看前10行 df=pd.read_csv('E:/暑期学习/动手学数据分析/第一单元项目集合/train.csv') print(df.head(10)) 拓展1:TSV与CSV的区别: 1)从名称上即可知道,TSV是用制表符(Tab,'\t')作为字段值的分隔符;CSV是用半角逗号(',')作为字段值的分隔符; 2)IA

2021-07-11 23:58:23 326

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除