矢量数据/栅格数据制作掩膜(mask)

本文分享结合Arcgis和ENVI将栅格数据制作为目标行列数掩膜文件的过程。以土地类型分类产品为例,先去除河流得到栅格数据并转为矢量数据,再用Arcgis调整行列数,经Raster Calculator处理,最后用ENVI Classic得到最终掩膜文件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        通过矢量数据制作栅格数据的方法比较多,这里我分享一下结合ArcgisENVI栅格数据制作为目标行列数的掩膜文件的过程。

        我使用的是已有的土地类型分类产品,需要将河流部分地区掩膜掉,因此需要根据这一分类产品的tif格式数据,制作出mask。另外,由于像元大小的差异性,在同一研究区内该产品数据的行列数和我想要得到的mask的行列数可能不一致,所以需要更多的操作将mask转换为目标行列数。

第一步:首先我根据该分类产品得到了去除河流的栅格数据,此时的数据行列数为(4105, 2399).

 在ArcToolbox中找到Conversion Tools -> From Raster -> Raster to Polygon,将去除河流的栅格数据转换为矢量数据

第二步:使用Arcgis:在ArcToolbox中找到Conversion Tools -> To Raster -> Polygon to Raster;

        Input输入转换得到的矢量文件,Output输出掩膜文件位置和名称,通过改变Cellsize可以调整掩膜的行列数,可以多试几个不同的Cellsize即可得到合适行列数的掩膜文件,这里通过将像元从0.0083333改变为0.0089832使得行列数从(4105, 2399)变为了(3807, 2225).

         点击OK可以得到mask.tif如下所示:

      然后通过Raster Calculator将掩膜文件中值为1的栅格转为Null,将Null转为1。具体操作如下:

         1.首先将Null转为1,如图所示:

         2.其次再将值为1的栅格转为Null,如图所示:

         最后结果mask_2.tif如图所示(注意需要掩膜的部分一定要是null值):

第三步:使用ENVI Classic版本,打开刚刚制作的mask_2.tif。

在Basic Tools中找到并点击Build Mask,选择Display #1,在Mask Definition界面选择输出路径即可得到最终的mask文件,行列数为(3807, 2225)。如图所示:

智能网联汽车的安全员高级考试涉及多个方面的专业知识,包括但不限于自动驾驶技术原理、车辆传感器融合、网络安全防护以及法律法规等内容。以下是针对该主题的一些核心知识点解析: ### 关于智能网联车安全员高级考试的核心内容 #### 1. 自动驾驶分级标准 国际自动机工程师学会(SAE International)定义了六个级别的自动驾驶等级,从L0到L5[^1]。其中,L3及以上级别需要安全员具备更高的应急处理能力。 #### 2. 车辆感知系统的组成与功能 智能网联车通常配备多种传感器,如激光雷达、毫米波雷达、摄像头和超声波传感器等。这些设备协同工作以实现环境感知、障碍物检测等功能[^2]。 #### 3. 数据通信与网络安全 智能网联车依赖V2X(Vehicle-to-Everything)技术进行数据交换,在此过程中需防范潜在的网络攻击风险,例如中间人攻击或恶意软件入侵[^3]。 #### 4. 法律法规要求 不同国家和地区对于无人驾驶测试及运营有着严格的规定,考生应熟悉当地交通法典中有关自动化驾驶部分的具体条款[^4]。 ```python # 示例代码:模拟简单决策逻辑 def decide_action(sensor_data): if sensor_data['obstacle'] and not sensor_data['emergency']: return 'slow_down' elif sensor_data['pedestrian_crossing']: return 'stop_and_yield' else: return 'continue_driving' example_input = {'obstacle': True, 'emergency': False, 'pedestrian_crossing': False} action = decide_action(example_input) print(f"Action to take: {action}") ``` 需要注意的是,“橙点同学”作为特定平台上的学习资源名称,并不提供官方认证的标准答案集;建议通过正规渠道获取教材并参加培训课程来准备此类资格认证考试。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值