漫画《修车危情》漫画修车危情第一话完整版

漫画《修车危情》讲述了街头修理工申,因生活所迫接受了一位富有的客户杰克的高额修理费,然而他发现杰克身涉险境。尽管意识到可能带来的麻烦,申却发现自己无法摆脱杰克的纠缠。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在街上修理出故障的车勉强维持生活的街头修理工申,正好遇到车出故障愿意支付巨款当修理费的杰克。杰克对自己投来带有X意味的视线很碍眼,可他不想错过一次能支付几个月生活费的杰克,勉强给了联系方式。 但申知道杰克牵涉到危险事件后,直觉到要远离他才不会被卷进去,可不知为何却甩不掉杰克…?!

 

PHOTOSHOP.LAB修色圣典[中文全彩][六分卷][过路人odv1]. 定价:128元 国内第一本Lab模式方面的图书  数码印前技术之父殚精竭智之杰作  引发Photoshop色彩修正划时代之变革  关于Photoshop Lab模式的重量级专著 Lab模式是Photoshop中重要的三大色彩模式之一。RGB模式是基于光学原理的,而CMYK模式是颜料反射光线的色彩模式,Lab模式不依赖于光线,也不依赖于颜料,弥补了RGB与CMYK两种色彩模式的不足。   在图像编辑中使用Lab模式是避免色彩丢失的最佳方法,因为Lab模式转换为CMYK模式时不会像RGB模式转换为CMYK模式时那样丢失色彩。   如何在Photoshop中使用Lab模式调整颜色呢?数码印前技术之父Dan Margulis在本书中为您深入剖析。 Dan Margulis 被誉为“数码印前技术之父”。2001年,他就成为Photoshop Hall of Fame(Photoshop名人馆)首批成员之一(他是其中惟一的作家)。在宣布他当选时,美国Photoshop国家专业协会在颁奖词中说:“Dan能够将复杂的概念简单化为用户可以理解的语言,他处理实际问题的主张已经使他成为当今颜色再现领域最有影响的人物。” 内容简介 Photoshop LAB颜色空间强大的功能常常被大多数用户所忽视,其中原因之一是这方面的资料很少。目前出版的绝大多数Photoshop图书只是介绍hotoshop某个版本的功能、界面,或者是某种效果的实现方法。这些与本书比起来,就显得很肤浅。本书深入探索Photoshop LAB颜色空间,披露LAB秘密,全面介绍LAB结构和优缺点,以及它在修饰、颜色变换、锐化、模糊、蒙版和选区创建等领域的应用。这些内容不会随着Photoshop版本更新而过时,也为读者提供一种全新的思路来实现自己的创作。正如David Biedny在本书序言中所“本书是所有媒体形式中曾经为Photoshop创作的最深奥、最鼓舞人心、最富洞察力的一本”。   本书适合数码摄影、平面设计、照片修饰、印前处理等领域各层次的用户阅读。无论是专业人员,还是普通爱好者,都可以通过阅读本书迅速提高自己的Photoshop应用水平。
### 使用 Pandas 创建 DataFrame 并添加数据 #### 创建 DataFrame 的基本方式 为了创建一个新的 `DataFrame`,可以利用多种不同的输入形式来初始化这个对象。最常用的方式之一是通过字典结构的数据作为输入[^3]。 ```python import pandas as pd # 利用字典构建 DataFrame data_dict = {'Column1': ['A', 'B', 'C'], 'Column2': [1, 2, 3]} df = pd.DataFrame(data=data_dict) print(df) ``` 此段代码展示了如何基于一个由列表组成的字典来建立 `DataFrame` 对象。这里定义了一个名为 `data_dict` 的变量存储列名及其对应的值集合;随后调用了 `pd.DataFrame()` 函数,并将该字典传递给它以形成表格式的结构化数据集。 #### 向现有 DataFrame 中追加单行记录 当需要向已经存在的 `DataFrame` 添加新条目时,可以通过构造包含新增项信息的新字典并与原表连接实现这一目的。下面的例子说明了具体做法: ```python new_row = {'Column1': 'D', 'Column2': 4} # 将新行转换成 DataFrame 形式以便于后续操作 temp_df = pd.DataFrame([new_row]) # 追加新行至原有 DataFrame result_df = pd.concat([df, temp_df], ignore_index=True) print(result_df) ``` 上述过程首先准备了一条待加入的新纪录 `new_row`,接着将其转化为临时的 `DataFrame` 实例 `temp_df` 方便执行拼接动作。最后借助 `pd.concat()` 方法把两个 `DataFrame` 结合起来得到最终的结果 `result_df`,同时设置参数 `ignore_index=True` 来重新编排索引序号[^1]。
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值