深度学习记录2(线性回归的简洁实现)

声明:本文参考资料为《动手学深度学习》

1、整体思路

使用Pytorch框架,完成对线性回归的实现

2、详细代码分析

本文与https://blog.csdn.net/weixin_58161464/article/details/116707519进行对比

import numpy as np
import torch
from torch.utils import data
from d2l import torch as d2l

true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = d2l.synthetic_data(true_w, true_b, 1000)

对于数据集的生成,两者无差别

def load_array(data_arrays, batch_size, is_train=True): 
    """构造一个PyTorch数据迭代器。"""
    dataset = data.TensorDataset(*data_arrays) #类似zip,将features和labels组合在一起
    return data.DataLoader(dataset, batch_size, shuffle=is_train)

batch_size = 10
data_iter = load_array((features, labels), batch_size)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值