- 博客(2)
- 收藏
- 关注
原创 seaborn 可视化展示
bins:int型变量,用于确定直方图中显示直方的数量,默认为None,这时bins的具体个数由Freedman-Diaconis准则来确定 hist:bool型变量,控制是否绘制直方图,默认为True kde:bool型变量,控制是否绘制核密度估计曲线,默认为True rug:bool型变量,控制是否绘制对应rugplot的部分,默认为False fit:传入scipy.stats中的分布类型,用于在观察变量上抽取相关统计特征来强行拟合指定的分布,下文的例子中会有具体说明,默认为N
2021-08-05 20:32:57 185
原创 去除缺失值和异常值
# 拷贝sheet_datasnew_sheet_datas = sheet_datas # sheet_datas是5个df组成的矩阵,sheet_datas[:-1]表示前4个df组成矩阵# enumerate(list)返回下标和对应的元素for index,each_data in enumerate(sheet_datas[:-1]): # new_sheet_datas[index] 表示 new_sheet_datas中下标为index的元素,在这里是一个datafr.
2021-07-16 20:01:54 304
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人