主要思路:模型保存之后,通过Flask(轻量级web开发框架,让我们可以使用Python语言快速实现一个网站或Web服务)加载该模型,然后App调用该web界面。
这篇主要是记录将训练的SVM模型通过Flask加载到Web。
主要分为一下几个步骤:
一、配置Flask
方法一:pip install flask
方法二:在pycharm中部署(个人倾向于使用这种方法)
搜索flask,然后install package。成功后在在工程依赖的包视图里看到flask(上图第二行)。
二、保存SVM模型;
这里将svm模型放在TrainingModel.py。
关键代码:
注意读取数据类型问题!有个报错AttributeError: 'str' object has no attribute 'predict',是数据类型不对,我卡了两天才改对(哭唧唧)。
三、构建Web界面;
在Pycharm中就可构建Web界面——templates/page.html。