机器学习模型嵌入Android App(上)

文章介绍了如何通过Flask轻量级web框架将训练好的SVM模型加载到Web服务中。首先,讲解了安装Flask的方法,接着阐述了保存SVM模型的过程,特别提到了数据类型匹配的重要性。然后,在Pycharm中创建Web界面,并在App.py中实现模型与Web界面的结合。最后指出.html文件应放在templates目录下,.py文件在venv目录下。
摘要由CSDN通过智能技术生成

主要思路:模型保存之后,通过Flask(轻量级web开发框架,让我们可以使用Python语言快速实现一个网站或Web服务)加载该模型,然后App调用该web界面。

这篇主要是记录将训练的SVM模型通过Flask加载到Web。

主要分为一下几个步骤:

一、配置Flask

方法一:pip install flask

方法二:在pycharm中部署(个人倾向于使用这种方法)

搜索flask,然后install package。成功后在在工程依赖的包视图里看到flask(上图第二行)。 

二、保存SVM模型;

这里将svm模型放在TrainingModel.py。

关键代码:

注意读取数据类型问题!有个报错AttributeError: 'str' object has no attribute 'predict',是数据类型不对,我卡了两天才改对(哭唧唧)。

三、构建Web界面;

在Pycharm中就可构建Web界面——templates/page.html。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值