这里写目录标题
重点()
第一章函数
函数:反余弦函数:记作y=arccosx或cosy=x (x∈[-1,1])
和反正弦函数:记作y=arcsinx或siny=x(x∈[-1,1])
对数的真数logax是指的是以a为底x的对数,其中a叫做对数的底数,N叫做真数,x的取值范围是大于0
y=logax的意思是a的y次方等于x
奇偶性:
1、 如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)就叫偶函数。
关于y轴对称;
2、 如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫奇函数。
关于原点对称;
3、 如果对于函数定义域内的存在一个a,使得 f(a)不等于 f(-a),存在一个b,使得 f(-b) 不等于f(b),那么这个函数是非奇非偶函数。
奇偶性的运算:
两个偶函数相加所得的和为偶函数,两个奇函数相加所得的和为奇函数,两个偶函数相乘所得的积为偶函数,两个奇函数相乘所得的积为偶函数。
一个偶函数与一个奇函数相乘所得的积为奇函数,几个函数复合,只要有一个是偶函数,结果是偶函数;若无偶函数则是奇函数。
第二章极限
sinx,cosx的取值范围[-1,1]
y=arcsinx的定义域是[-1,1],值域是[-π/2,π/2]
y=arccosx的定义域是[-1,1],值域是[0,π]
y=arctanx的定义域是(-∞,+∞),值域是(-π/2,π/2)
y=arccotx的定义域是(-∞,+∞),值域是(0,π)
极限题型
在极限的计算如果极限每一个都有意义就可以直接进行计算
重点题型
分子分母有理化:主要是含有根号
分子分母同指数幂
x只能趋近无穷大
两个重要极限
两个重要极限例题
第二类重要极限
有限个1相乘等于1,无限个1相乘就要具体情况具体分析
等价无穷小替换
对数前面的系数可以一定到真数的指数的位置
连续
极限存在的条件:
一、单调有界准则。函数在某一点极限存在的充要条件是函数左极限和右极限在某点都存在且相等
。
如果左右极限不相同、或者不存在。则函数在该点极限不存在。即从左趋向于所求点时的极限值和从右趋向于所求点的极限值相等。
一元函数的微分学(导数)
3.y=a^x y’=a^xlna
y=e^x y’=e^x
4.y=logax y’=logae/x
y=lnx y’=1/x
5.y=sinx y’=cosx
6.y=cosx y’=-sinx
7.y=tanx y’=1/cos^2x
8.y=cotx y’=-1/sin^2x
2运算法则
加(减)法则:[f(x)+g(x)]‘=f(x)’+g(x)’
乘法法则:[f(x)*g(x)]‘=f(x)’*g(x)+g(x)'*f(x)
除法法则:[f(x)/g(x)]‘=[f(x)’*g(x)-g(x)'*f(x)]/g(x)^2
基本初等函数的导数表
1.y=c y’=0
2.y=α^μ y’=μα^(μ-1)
3.y=a^x y’=a^x lna
y=e^x y’=e^x
4.y=loga,x y’=loga,e/x
y=lnx y’=1/x
5.y=sinx y’=cosx
6.y=cosx y’=-sinx
7.y=tanx y’=(secx)2=1/(cosx)2
8.y=cotx y’=-(cscx)2=-1/(sinx)2
9.y=arc sinx y’=1/√(1-x^2)
10.y=arc cosx y’=-1/√(1-x^2)
11.y=arc tanx y’=1/(1+x^2)
12.y=arc cotx y’=-1/(1+x^2)
反函数求导法则-反函数与原函数的关系
一、反函数与原函数的关系 1、反函数的定义域是原函数的值域,反函数的值域是原函数的定义域。 2、互为反函数的……
三角函数值求角的一般步骤-反三角函数的性质
一、已知三角函数值求角的步骤 (1)由已知三角函数值的符号确定角的终边所在的象限(或终边在哪条坐标轴上); (2)若函数……
同角三角函数基本关系公式-同角三角函数关系式的应
一、同角三角函数的基本关系 1.三角函数倒数关系:tanαcotα=1;sinαcscα=1;cosαsecα=1。 2……
三角函数线的定义-三角函数线怎么画-三角函数线比
一、三角函数线比较大小 (1)正弦线、余弦线、正切线都是有向线段,利用它们的数量来表示三角函数值,是数形结合……
求导的三种形式
第一种:f '(x0)=lim[x→x0] [f(x)-f(x0)]/(x-x0);第二种:f '(x0)=lim[h→0] [f(x0+h)-f(x0)]/h;第三种:f '(x0)=lim [Δx→0] Δy/Δx。导数也叫导函数值,又名微商,是微积分中的重要基础概念。
隐函数的导数
微分
洛必达法则(重点)
导数的应用一(切线和法线)
导数的应用二(函数的单调性和极值)
导数的应用(函数的极值)
局部极值,(在该点的周围的最大值)
“极大值”是一个数值,最大值是一个数字,即最大点的y。,最大点是指以(x,y)形式表示的点。
二阶导数大于0是极小点,二阶导数小于0是极大点;
lnx函数中x的取值范围是大于等于0
函数的最值
导函数的应用(凹凸性)
导函数的应用(拐点)
导函数的应用(渐近线)
渐近线x=x0,一般情况下都是没有意义的点
例题:
一元函数积分学(不定积分)
不定积分就是求导数的原函数
即已知某一个函数的导数的结果,求这个导数的原函数;
例子:
不定积分的公式
不定积分二
第一还原积分法
第二还原积分法
分部积分法
第二节分部积分法(定积分)
曲边梯形的定义:x=a,x=b,x轴,一条曲线f(x) 所围成的图形成为曲边梯形;
定积分和不定积分的区别:
1):定积分有去脂范围,
2):定积分求出来是一个数值,不定积分球出来是一个函数(全体原函数)
(定积分的性质)定积分的几何意义
当面积在x轴的下方,那么就需要我们人为的添加-
(负号)
上接上一个图形
定积分的性质
性质4:如果被积函数是奇函数,积分区间是对称的,定积分为0
定积分是一个数值,数值的导数是0